الترانزستور


(صدى السنين) #1

الترانزستور

[SIZE=4][COLOR=darkred][FONT=tahoma]تمكّنت مختبرات شركة بل للهاتف، في ميوري هيلز في نيو جرزي بالولايات المتحدة، وبقيادة العالم وليم برادفورد شوكلي (1910 ـ ) بمفاجأة دنيا الإلكترونات بصمام ثلاثي الاقطاب يعتمد كلياً على المواد الصلبة، كتب له أن يقضي مع الزمن على سيطرة الصمامات الإلكترونية الخوائية.
نتيجة لهذا العمل، تتمتّع جميع اجزاء العالم اليوم بامكانية استعمال اجهزة راديو تعمل بالبطارية، نقالة وصغيرة الحجم وقليلة الكلفة.
الغرض منه تقويم وتكبير التيار المتردد.

تركيبه:
يتركب من ثلاث مناطق:
أ ـ الباعث وهو المنطقة التي القاعدة بحاملات الشحنة (ثقوب موجبة أو إلكترونات حرة) .
ب ـ القاعدة وهي المنطقة التي تقع بين الباعث والمجمع وسمكها صغير جداً بالنسبة لهما كما أن درجة تركيز الشوائب بها تقل كثيراً فيهما. ونظراً لرقتها ونقص شوائبها فإنها تمرر معظم حاملات الشحنة التي تصلها من الباعث إلى المجمع، وبذلك لا يقل تيار المجمع عن تيار الباعث إلا قليلاً.
ج ـ المجمع وهو المنطقة التي تجمع حاملات الشحنة القادمة من القاعدة.
نوعا الترانزستور:
أ ـ نوع (س. م. س) .
وفيه يكون الباعث والمجمع من شبه موصل سالب النوع وتكون القاعدمن شبه موصل موجب النوع.
ب ـ نوع (م. س. م) .
وفيه يكون الباعث والمجمع من شبه موصل موجب النوع وتكون القاعدة منم شبه موصل سالب النوع.
9 ـ تصنع قاعدة الترانزستور رقيقة جداً ويوضع بها نسبة قليلة جداً من الشوائب حتى تمرّر معظم الشحنات من الباعث إلى المجمع.
10 ـ يجب أن توصل القاعدة مع الباعث توصيلاً أمامياً ويوصل المجمع مع الباعث توصيلاً عكسياً حتى تمر الشحنات من الباعث إلى القاعدة إلى المجمع
أشباه الموصلات
1 ـ تنقسم المواد من حيث قدرتها على توصيل التيار الكهربي إلى ثلاثة أقسام:
1 ـ مواد جيدة التوصيل: ـ مثل المعادن كالنحاس والفضة والرصاص.
(أ) يرجع جودة توصيلها للكهربية لاحتوائها على إلكترونات حرة بأعداد وفيرة.
(ب) تزداد مقاومتها بارتفاع درجة الحرارة.
2 ـ مواد عازلة مثل الزجاج والمطاط والبلاستيك، ترجع عدم توصيلها للكهرباء لعدم احتوائها على إلكترونات حرة.
3 ـ أشباه الموصلات مثل الجرمانيوم والسيليكون.
أ ـ هي مواد ليست جيدة التوصيل للكهرباء كالموصلات وليست عازلة تماماً كالعازلات ولكن قدرتها على التوصيل تحتل موقعاً متوسطاً بينهما.
ب ـ ترتبط ذراتها بعضها ببعض في البلورة بروابط تساهمية.
ج ـ تقل مقاومتها بارتفاع درجة الحرارة حيث تكون الطاقة الحرارية كافية لكسر بعض هذه الروابط وتحرير بعض الإلكترونات.
د ـ تعتمد في خواصها الكهربية على ما يضاف إليها من شوائب.

4 ـ يمكن جعل بلورة الجرمانيوم موصلة للكهرباء بطريقتين:
أ ـ رفع درجة الحرارة.
ب ـ إضافة شوائب إلى البللورة النقية.
أولاً: رفع درجة الحرارة:
أ ـ في درجات الحرارة المنخفضة تكون الإلكترونات شديدة الإرتباط بذرات الجرمانيوم ويصعب تحريرها لذا تكون البلورة رديئة التوصيل للكهربية وتكون عازلة تماماً عند درجة الصفر المطلق.
ب ـ عند رفع درجة حرارة الجرمانيوم تصبح الطاقة الحرارية كافية لكسر بعض الروابط فتحرر بعض الإلكترونات وتصبح البلورة موصلة للكهربية، أي أن أشباه الموصلات تتميز بزيادة قدرتها على التوصيل الكهربي إرتفاع درجة الحرارة.
ثانياً: إضافة شوائب إلى البللورة النقية:
تزداد درجة التوصيل الكهربي لذرات الجرمانيوم في البلورة بإضافة نسبة قليلة جداً من بعض الشوائب إليها. وهذه الشوائب على نوعين مثل شائبة من عنصر خماسي التكافؤ مثل الزرنيخ وشائبة من عنصر ثلاثي التكافؤ مثل الألومنيوم.
5 ـ يعتمد التوصيل الكهربي في الجرمانيوم النقي الساخن على حركة كل من الإلكترونات والثقوب الموجبة.
6 ـ نحصل على الجرمانيوم الموجب النوع باستخدام شائبة ثلاثية التكافؤ مثل الألومنيوم تسمى شائبة متقبلة، وتعمل على إحداث ثقوب موجبة ويتم التوصيل الكهربي في البلورة نتيجة لحركة هذه الثقوب الموجبة.
7 ـ نحصل على الجرمانيوم السالب النوع باستخدام شائبة خماسية التكافؤ مثل الزرنيخ تسمى شائبة معطية، وتعمل على تواجد إلكترونات حرة ويتم التوصيل الكهربي في البلورة نتيجة لحركة الإلكترونات الحرّة.
8 ـ مقارنة بين الجرمانيوم السالب والجرمانيوم الموجب.[/font]
[/color][/size]
الجرمانيوم السالبالجرمانيوم الموجبالبلورة تحتوي على شائبة من عنصر خماسي التكافؤ مثل الزرنيخالبلورة تحتوي على شائبة من عنصر ثلاثي التكافؤ مثل الألومنيومتعمل شائبة الزرنيخ على تواجد إلكترونات حرة في التشابك البلوريتعمل شائبة الألومنيوم على إحداث ثقوب موجبة في التشابك البلورييعتمد التوصيل الكهربي فيه على الإلكترونات الحرةيعتمد التوصيل الكهربي فيه على الثقوب الموجبة
[FONT=tahoma][SIZE=4][COLOR=darkred]9ـ تسمى شائبة الزرنيخ شائبة معطية لأنها تعمل على تواجد الإلكترونات الحرة. وتسمى بلورة الجرمانيوم التي تحتوي على شوائب من الزرنيخ بلورة من النوع السالب، وذلك لأن التوصيل الكهري يتم فيها عن طريق الإلكترونات. وتكون البلورة من النوع السالب متعادلة كهربياً لأن الشحنات الموجبة لذرات الزرنيخ تتعادل مع الشحنات السالبة للإلكترونات المتحررة منه.
10 ـ تسمى شائبة الألومنيوم شائبة متقبلة لأنها تعمل على إحداث ثقوب موجبة في التشابك البلوري. وتسمى بلورة الجرمانيوم التي تحتوي على شوائب من الألومنيوم بلورة من النوع الموجب وذلك لأن التوصيل الكهربي يتم فيها عن طريق الثقوب الموجبة. تكون البلورة من النوع الموجب متعادلة كهربياً لأن الشحنات الموجبة للفجوات تساوي الشحنات السالبة لذرات المادة المتقبلة (الألومنيوم) .
أشهر التحويلات الفيزيائية


أشهر الثوابت
[/color][/size][/font]
المقحل أو الترانزستور (بالإنكليزية: Transistor) (اختصاراً لكلمتي Transfer Resistor أي مُقاوِمُ النَقْل) وهي نبيطة تعتبر أحد أهم مكونات الأدوات الإلكترونية الحديثة مثل الحاسوب، اخترعه العلماء الأمريكيون (والتر براتن) و(جون باردين) و(وليام شوكلي), هو بلورة من مادة شبه موصل مطعمة كالجرمانيوم أو السيليكون تحتوي على بللورة رقيقة جدابحيث تكون المنطقة الوسطى منها شبه موصل موجب أو سالب وتسمى القاعدة بينما المنطقتان الخارجيتان من النوعية المخالفة وله قدرة كبيرة على تكبير الإشارات الإلكترونية
للترانزيستور ثنائي القطب وصلتا م س وثلاثة أطراف. ويربط طرفان من هذه الأطراف، في العادة، الباعث والمجمِّع إلى دائرة خارجية، بينما يصل الطرف الثالث القاعدة بدائرة داخلية. لكن رفع الجهد المطبقة على القاعدة قليلا يؤدي إلى دخول عدد كبير من الإلكترونات إلى القاعدة عبر الوصلة المنحازة أماميا، ويتفاوت هذا العدد حسب قوة الجهد. ولأن منطقة القاعدة رقيقة جدا، يستطيع مصدر الفولتية في الدائرة الخرجية جذب الإلكترونات عبر الوصلة المنحازة عكسيا. ونتيجة لذلك يسري تيار قوي عبر الترانزيستور وعبر الدائرة الخارجية. وبهذه الطريقة يمكن التحكم في سريان تيار قوي عبر الدائرة الخارجية، بتزويد القاعدة بإشارة صغيرة.
[/center]
[تاريخ الترانزستور

سجل الفيزيائى “جوليس ادجر لينيفلد” (Juluis edgar lilienfeld) أول براءة اختراع للترانزستور في كندا عام 1925م وكان هذا الاختراع مشابه لترانزستور تأثير المجال " FET " ولكنه مع ذلك لم ينشر ابحاث عن هذا الترانزستور ولم يحقق عمليا باستخدام نبائط واقعية وفي عام 1934م قام الالمانى “اوسكر هيل” (Osker Heil) بتسجيل براءة اختراع لترانزستور مشابه للترانزستور السابق…
في عام 1942م قام “هبرت مارتين” (Herbert marten) بعمل بتجربة باستخدام ما يسمى “الديو دايو” (الوصلة الثنائية المزدوجة)أثناء العمل على لاقط بنظام رادار دوبلر وهذه الوصلة الثنائية المزدوجة مكونة من اثنين من الوصلات الثنائية ووصلات معدنية على قاعدة من شبه الموصل ولكنه اكتشف عدد من الظواهر التي لم يتمكن من تفسيرها عن طريق الوصلتين المنفصلتين واستتبع هذا ظهور الفكرة الاساسية لترانزستور التوصيل…
في عام 1947م قام “جون باردين” (John Bardeen) و"والتر براتين" في معامل "AT & T bell "في الولايات المتحدة الأمريكية بملاحظة انه عند توصيل مصدر كهربى على بلورة من الجرمانيوم ان الطاقة الناتجة أكبر من طاقة المصدر الكهربى الداخلة وقد قام “وليام شوكلى” بمعرفة السبب في ذلك وعلى مدار شهور قليلة عملوا على التوسع الكبير لعلوم اشباه الموصلات وقد جاء اسم الترانزستور من الكلمة الإنجليزية “Transfer resistor” التي تعنى ناقل المقاومة…

[] أهمية الترانزستور

في الواقع ان الترانزستور هو أهم المكونات الإلكترونية الحديثة ويعتبر من اعظم الاختراعات في القرن العشرين ويستمد اهميته في حياة المجتمع من القدرة الفائقة على انتاجه باستخدام عمليات تلقائية الية "عمليات تصنيع اشباه الموصلات"مما يجعل انتاجه قليل التكلفة.
و على الرغم من أن العديد من الشركات تنتج سنويا ما يزيد عن البليون من الترانزستورات المنفصلة إلا أن الغالبية العظمى من الترانزستورات التي تنتج تكون في الدوائر المتكاملة “Integrated circuit” والتي تختصر إلى “IC” وتحتوى هذه الدوائر المتكاملة على العديد من الترانزستورات والوصلات الثنائية والمقاومات والمكثفات والمكونات الإلكترونية الأخرى والتي تمثل دائرة إلكترونية كاملة تقوم بعمل وظيفة معينة وهناك أيضا “البوابات المنطقية” (Logic gates) والتي تتكون من عدد من الترانزستورات والتي قد تصل إلى العشرين لعمل بوابة منطقية واحدة وفي المعالجات الدقيقة “Microprocessors” المتقدمة وصل عدد الترانزستورات إلى 3 بلايين في شريحة واحدة في عام 2011 حيث كان قد وصل إلى 60 مليون في الشريحة في عام 2002 ومن أهم مميزات الترانزستور التكلفة الضئيلة المرونة في الاستخدام والثبات مما جعله واسع الاستخدام والانتشار وقد دخلت الترانزستورات في دوائر التحكم الاميكانيكية وحلت محل الادوات الميكانيكية التي كانت تستخدم في ذلك ويمكن أيضا استخدام متحكم دقيق “Micro controller” في كتابة برنامج صغير لأداء وظيفة التحكم المطلوبة والماكفئة للمهمة التي يقوم بها التصميم الميكانيكى…

[] استخدامه

كان استخدام الترانزستور ثنائى القطب(Bipolar Junction Transistor) وإلى تختصر إلى (BJT) هو الأكثر شيوعا في الستينيات والسبعينيات من القرن الماضى ولكن مع ظهور الترانزستور ثنائى المجال(Metal Oxide Semiconductor Field Effect Transistor) تقلص دور ثنائى القطب إلى الدوائر التناظرية مثل المكبرات البسيطة لكبر منطقة عمله الخطية " Linear Mode Operation" وسهولة تصنيعه وهناك العديد من الخصائص للترانزستور ثنائى المجال مثل استخدامه في الدوائر ذات القدرة المنخفضة باستخدام تقنية ال " C MOS " والتي تعنى استخدام المعدن والاكسيد وشبه الموصل المتكامل والتي تجعل مشاركة الدوائر الرقمية سهلة وهناك العديد من ترانزستورات تأثير المجال الحديثة وإلى تجمع بين الاستخدام في دوائر القدرات العالية والدوائر التناظرية المؤقتة " Clocked Analog circuit " مثل معادلات الجهود والمكبرات وناقلات القدرة والمحركات…

[. العمليات المبسطة

[CENTER]
دائرة مبسطة للترانزستور ثنائي القطب


الترانزستور كمكبر

يستمد الترانزستور اهميته وضروريته في الحياة من قدرته على معالجة الإشارات الصغيرة والتي توضع على اثنين من اطرافه وتنتج إشارات كبيرة على طرفين اخرين وتسمى هذه الخاصية بنسبة التكبير (Gain) ويمكن التحكم في الترانزستور بما يجعل الدخل متناسبا مع الخروج بنسبة معينة وفي هذا الحالة يستخدم الترانزستور كمكبرو يمكن أيضا استخدام الترانزستور كمفتاح لفتح وغلق التيار والذي يمكن التحكم فيه عن طريق بقية عناصر الدائرة…[/center]
[] استخدام الترانزستور كمكبر

صمم الترانزستور ذو الباعث المتصل بالأرض لكى يستجيب إلى الإشارات الصغيرة في القاعدة ويقوم بتكبير هذه الإشارات على المخرج عند المجمع، وهناك العديد من تكوينات الدوائر التي تقوم بالتكبير بمميزات مختلفة سواء للتيار أو الجهد أو الاثنين معا.
ففى بعض الهواتف المحمولة والتلفاز هناك العديد من المنتجات التي يدخل فيها الترانزستور كمكبر مثل مكبرات الصوت أو النقل الرديواى أو معالجة الإشارات وكانت أول دائرة ترانزستور ذات قدرات ضعيفه تصل إلى بعض الاجزاء من العشرة من الوات وتم تكبيرها ومع التقدم ازدادت نسبة التكبير ونقائه تدريجيا عندما وجدت ترانزستورات احسن وتم تقويم احداثيات الترانزستور ووصلت القدرات الآن إلى بضع المئات من الوات وبتكلفة صغيرة.

[] الترانزستور كمفتاح

الترانزستور هو أكثر المفاتيح الإلكترونية على حد سواء في الدوائر ذات القدرة المنخفضة مثل البوابات المنطقية أو ذات القدرة العالية مثل مفاتيح مزودات الطاقة ومن امثلة المفاتيح الخفيفة دوائر الباعث المتصل بالأرض ففى الشكل المقابل عندما يزداد جهد القاعدة يزداد التيار في المجمع وعلى الحمل (المقاومة) زيادة اسية وبالتالى يقل الجهد في المجمع بسبب المقاومة وتكون المعادلة الحاكمة هي
V(Rc)=Ice*Rc
V(Rc)+V(ce)=Vcc
هو فرق الجهد على المقاومة VRc: حيث
التيار المار في المجمع:Ice
الجهد بين المجمع والباعث:Vce
فلو أمكن خفض VCE للصفر (عملية الغلق التام) ولهذا فان (Ic) لن يزيد عن (Vcc/Rc) ،و مع زيادة الجهد
على القاعدة والتيار فيها فان الترانزستور في هذه الحالة يكون في حالة تشبع ،و من ثم يمكن اختيار الجهد الداخل على القاعدة لجعل المخرج مساويا تماما للصفر أو مساويا لقيمة Vcc (جهد المصدر) ويستخدم الترانزستور كمفتاح في الدوائر الرقمية حيث توجد القيم فقط فتح وغلق ولا تواجد للقيم بينهما مقارنة بين الصمامات والترانزستورات
قبل وجود الترانزستور كانت الصمامات (Valves) أو انابيب التفريغ (Vacuum Tubes) هو المكون الوحيد في المعدات الإلكترونية ولكن بحلول الترانزستور أصبح هو أكثر استخداما لما له العديد من المزايا…
1:- صغر الحجم والوزن والذي يؤدى إلى تطوير الدوائر الإلكترونية في أن تكون صغيرة جدا
2:- عمليات التصنيع الالية والتي تقلل التكلفة لكل وحدة مفردة
3:- الجهود الصغيرة التي يستطيع العمل عليها مما جعله صالح لتطبيقات الدوائر ذات البطاريات الصغيرة
4:- لا تحتاج إلى دورة احماء لمسخنات الكاثود بعد تطبيق القدرة
5:- الاستهلاك الضئيل للطاقة والكفأة العالية في استخدام الطاقة
6:- الاعتمادية العالية والتحمل الفيزيائى
7:- طول العمر الافتراضى حيث يعمل بعضها إلى ما يصل إلى خمسين عاما
8:- وجود النبائط المكملة وسهولة بناء الدوائر المتكاملة المتماثلة وهو ألامر المستحيل في حالة الصمامات
9:- عدم الحساسية للصدمات الميكانيكية والاهتزاز مما سهل حل هذه المشكلة مثلا في حالة الميكروفونات
قيود الاستخدام :-
لا تعمل جهود اشباه الموصلات عند جهود أعلي من 1000 فولت (على الرغم من أن هناك بعض النبائط تعمل عند 3000 فولت) وعلى نقيض ذلك فهناك بعض الصمامات التي تتحمل جهودا تصل إلى مئات الالاف من الفولتات

[ul]
[li]

عدم قدرته على العمل في حالة القدرات العالية والترددات العالية مثل تلك التي تستخدم في التنبؤ التلفزيونى الهوائى حيث كانت الصمامات أفضل أداءا من الترانزستورات نتيجة قابلية الحركة العالية للالكترونات في انابيب التفريغ عنها في الترانزستور واشباه الموصلات اضعف تحملا بكثير من الصمامات عند تعرضها للنبضات الناتجة من الانفجار النووى
[/li][/ul][] أنواع الترانزستور

[CENTER]ان نوعى الترانزستور يختلفان عن بعضهما اختلافا طفيفا في كيفية وضعها في دائرة معينة فكل منها له ثلاثة اطراف تسمى في حالة ثنائى القطب القاعدة "Base " والباعث "Emitter " والمجمع "Collector " وبمرور تيار متغير في القاعدة سيظهر تأثره مجمعا في المجمع والباعث، وفي حالة ترانزستور تأثير المجال تسمى البوابة "Gate "، المنبع "Source "، المصب "Drain " ويتحكم الجهد على البوابة في فرق الجهد بين المنبع والمصب…

يمكن تقسيم الترانزستورات إلى عدة فئات حسب التقسيم
1:- طبقا لشبه الموصل
جرمانيومى- سليكونى – جاليومى – زرنخيى – كربيدى سليكونى
2:- طبقا للبناء
BJT ثنائى القطب، MOSFETتأثير المجال، IGBT الترانزستور ذو البوابة المعزولة
3:- طبقا للقطبية
NPN الترانزستور من النوع السالب ويعنى منطقة من النوع السالب يليها منطقة من النوع الموجب يليها منطقة من النوع السالب
PNP الترانزستور من النوع الموجب ويعنى منطقة من النوع الموجبة يليها منطقة من النوع السالب يليها منطقة من النوع الموجب
4:- طبقا لقدرة التشغيل
صغير – متوسط – كبير
5:- طبقا لأقصى تردد تشغيل
موجات راديوية أو موجات الميكرومترية ويعطى أقصى تردد وفعال بجهد الثقل ويرمز له بالرمز FT والذي ينتج نسبة تكبير مساوية للوحدة
6:- طبقا للتطبيق المسخدم فيه
مفتاح – متعدد الأغراض – صوتى عالى الجهد – زوجى متماثل – عالى نسبة التكبير
7:- طبقا للتغليف الفيزيائى
ذو الثقب المعدنى - ذو الثقب البلاستيكى – المحمل سطحيا – سلسلة شبكة الكور – مغير القدرة
8:- طبقا لمعامل التكبير (hfe)
لذلك فان ترانزسور معين يمكن ان يوصف بهذا الوصف (سليكونى – ثنائى القطب من النوع السالب – مغير للطاقة عالى التردد – مفتاح).


(system) #2

شكرا لك انا اذكر اني درسته بصوره مبسطه ايام الجامعة