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ABSTRACT. This paper provides a brief overview of the basic concepts and equations that will be
used by other papers in the special issue on Damage and Fracture in Geomaterials. The first
section introduces the tensorial notation, defines the basic tensor operations and presents the
formalism for the volumetric-deviatoric decomposition of stress and strain. The second section
shows how to transcribe tensorial relations in the engineering notation. The basic equations
describing a linear elastic deformable body are summarized in the third section, and their
discretization by the finite element method is described in the fourth section, with an extension
to nonlinear constitutive relations in the fifth section. The last section outlines a thermodynamic
framework based on two potentials—the free energy and the dissipation potential.

RÉSUMÉ. Cet article présente une introduction sur les idées de base et les équations qui sont
utilisées dans cet ouvrage sur l’endommagement et la rupture des géomatériaux. La première
partie présente les notations tensorielles, les opérations tensorielles usuelles et le concept de
décomposition des contraintes et des déformations en une partie volumique et une partie dé-
viatorique. La deuxième partie montre comment transformer ces relations tensorielles en des
notations usuelles pour l’ingénieur. Les équations de bases décrivant la déformation d’un mi-
lieu élastique et leurs discrétisations par la méthode des éléments finis sont respectivement
introduites dans les troisième et quatrième parties avec une extension pour les comportements
non linéaires dans la cinquième partie. La dernière partie est dédiée au cadre thermodynamique
basé sur deux potentiels, l’énergie libre et le potentiel dissipatif.
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1. Tensorial notation

Variables used in engineering mechanics usually have the character of tensors. In
general, we denote first-order tensors (vectors) by lower-case Latin letters, second-
order tensors by lower-case Greek or Latin letters, and fourth-order tensors by capital
Latin letters. Bold face letters represent the entire tensors (compact notation). When
referring to the Cartesian components of tensors (indicial notation) we use lower-case
Latin subscripts i, j, k, l, ..., which can take values 1, 2, and 3 corresponding to the
Cartesian coordinate axes x1, x2, and x3. For example, u is the displacement vector
(first-order tensor) with components ui, i = 1, 2, 3; ε is the strain tensor (second-
order) with components εij , i = 1, 2, 3, and j = 1, 2, 3; σ is the stress tensor (second-
order) with components σij , i = 1, 2, 3, and j = 1, 2, 3; and D is the stiffness tensor
(fourth-order) with componentsDijkl, all subscripts running again from 1 to 3. When
the tensor itself has a subscript, we raise it to a superscript in the indicial notation in
order to avoid confusion with the subscripts referring to individual components. For
example, the components of the elastic stiffness tensor De are denoted as De

ijkl .

The transpose εT of a second-order tensor ε is obtained by switching the order
of subscripts, i.e., (εT )ij = εji. If the transposed tensor is equal to the original one
(εij = εji for all i and j), it is said to be symmetric. Fourth-order tensors can exhibit
minor symmetry (Dijkl = Djikl = Dijlk = Djilk for all i, j, k, l), or major symmetry
(Dijkl = Dklij for all i, j, k, l).

In expressions involving components of tensors we adhere to so-called Einstein
summation convention. Repeated subscripts in a product-like expression imply sum-
mation from 1 to 3; e.g., aikbkj means in the “full” notation

∑3

k=1
aikbkj .

The basic operations we need are:

– the dot product (contraction) of two first-order tensors, u · v = uivi, which
produces a scalar, and therefore is sometimes called the scalar product,

– the double-dot product (double contraction) of two second-order tensors,
σ : ε = σijεij , which also produces a scalar, and therefore could be called the scalar
product, too,

– the dot product (single contraction) of two second-order tensors, a · b, which
produces a second-order tensor with components (a · b)ij = aikbkj ,

– the dot products (contractions) of a second-order tensor with a first-order tensor,
σ ·n, or n ·σ, which produce a first-order tensor with components (σ ·n)i = σijnj ,
or (n · σ)i = njσji,

– the double-dot products (double contractions) of a fourth-order tensor with a
second-order tensor, D : ε, or ε : D, which produce a second-order tensor with
components (D : ε)ij = Dijklεkl, or (ε :D)ij = εklDklij , and

– the direct product of two second-order tensors, f ⊗ g, which produces a fourth-
order tensor with components (f ⊗ g)ijkl = fijgkl.
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The scalar products are commutative (u · v = v · u and σ : ε = ε : σ), the third
operation is commutative if the second-order tensor is symmetric (σ · n = n · σ if
σij = σji for all i, j), the fourth operation is commutative if the fourth-order tensor
exhibits major symmetry (D : ε = ε : D if Dijkl = Dklij for all i, j, k, l), and the
direct product is in general noncommutative.

An important example of a second-order tensor is the Kronecker delta, δ, with
components δij = 1 if i = j and δij = 0 if i 6= j. It plays the role of the unit element
with respect to the (single) dot product of two second order tensors, and therefore it
is also called the unit second-order tensor. Let us also introduce the unit fourth-order
tensor, I , with components Iijkl = δikδjl. This tensor exhibits major symmetry but
not minor symmetry, and it has the important property that I : ε = ε : I = ε for
any second-order tensor ε. Sometimes it is useful to work with the symmetrized unit
fourth-order tensor, IS , which has components ISijkl = (δikδjl + δilδjk)/2. This
tensor exhibits minor and major symmetry but the identity IS : ε = ε : IS = ε holds
only if the second-order tensor ε is symmetric.

Finally, let us introduce the notation ∂u/∂x for the tensor produced by differen-
tiation of a tensor-valued function u with respect to its tensorial argument x. For
example, if both u and x are first-order tensors then ∂u/∂x is a second-order tensor
with components

(

∂u

∂x

)

ij

=
∂ui
∂xj

[1]

For future use, it is helpful to show the structure of the stiffness tensor in linear
isotropic elasticity. In tensorial notation, the elastic stiffness is given by

De = λδ ⊗ δ + 2µIS [2]

or in subscript notation by

De
ijkl = λδijδkl + µ(δikδjl + δilδjk) [3]

where λ and µ are material constants called Lamé coefficients. These coefficients are
uniquely related to other pairs of material parameters characterizing a linear elastic
isotropic material, such as Young’s modulusE and Poisson’s ratio ν, or bulk modulus
K and shear modulus G:

λ =
Eν

(1 + ν)(1− 2ν)
= K − 2

3
G [4]

µ =
E

2(1 + ν)
= G [5]

Using [2], we can present the generalized Hooke’s law as

σ =De : ε = λδ ⊗ δ : ε+ 2µIS : ε = 3λδεV + 2µε [6]
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where

εV = 1

3
δ : ε [7]

is one third of the trace of the strain tensor, representing the relative change of volume.
The volumetric part of the strain tensor is εV δ, and when we subtract it from the strain
tensor we obtain the deviatoric strain

e = ε− δεV = ε− 1

3
δ ⊗ δ : ε =

(

IS − 1

3
δ ⊗ δ

)

: ε = ID : ε [8]

This has brought us to the deviatoric projection tensor

ID = IS − 1

3
δ ⊗ δ [9]

and if we introduce the volumetric projection tensor

IV = 1

3
δ ⊗ δ [10]

we can present the volumetric-deviatoric decomposition of the strain tensor as

ε = IS : ε = (IV + ID) : ε = IV : ε+ ID : ε =

= (ε)vol + (ε)dev = εV δ + e [11]

The stress tensor can be decomposed in a similar way as

σ = IS : σ = (IV + ID) : σ = IV : σ + ID : σ =

= (σ)vol + (σ)dev = σV δ + s [12]

where

σV = IV : σ = 1

3
δ : σ [13]

is the mean stress and

s = ID : σ = σ − σV δ [14]

is the stress deviator.

The elastic stiffness tensor can also be decomposed into its volumetric and devia-
toric part. Realizing that δ ⊗ δ = 3IV , we can rewrite [2] as

De = λδ ⊗ δ + 2µIS = 3λIV + 2µ(IV + ID) =

= (3λ+ 2µ)IV + 2µID = 3KIV + 2GID [15]

because the coefficient 3λ+ 2µ is recognized as three times the bulk modulus K, see
relation [4], and µ = G = shear modulus. The generalized Hooke’s law presented as

σ = De : ε = (3KIV + 2GID) : ε =

= 3KIV : ε+ 2GID : ε = 3KεV δ + 2Ge [16]
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naturally splits into the volumetric and deviatoric part:

σV = 3KεV [17]

s = 2Ge [18]

2. Engineering notation

The tensorial notation is certainly very elegant and useful in theoretical deriva-
tions. However, when developing a numerical algorithm that should be implemented
into a computer code, it is more practical to store stress and strain components in
one-dimensional arrays and stiffness moduli in two-dimensional arrays. Code devel-
opment is then facilitated if the basic formulas are written with stresses and strains
represented by column matrices and stiffness coefficients arranged in square matrices.
This is also the notation often used in engineering textbooks, and we shall call it the
engineering notation (or the Voight notation).

When using the engineering notation one has to be careful about the ordering of
components. The normal components are usually arranged in the natural order (i.e.,
σx followed by σy and σz) but for the shear components several conventions exist. In
principle it is possible to use any of them, but it is extremely important to select one
convention and stick to it throughout the entire project. One possibility is to set

σ =































σx
σy
σz
τyz
τzx
τxy































=































σ11

σ22

σ33

σ23

σ31

σ12































, ε =































εx
εy
εz
γyz
γzx
γxy































=































ε11
ε22
ε33
2ε23
2ε31
2ε12































[19]

Note that the engineering shear component γxy is twice the tensorial shear strain
ε12, etc. The reason for introducing the factor of 2 is not only that strain component
γxy has a physical meaning of the shear angle. More importantly, we want the energy
product σ : ε = σijεij to be replaced in the engineering notation by a simple scalar
product of column matrices, σT ε. Unfortunately, this simple transcription of the dou-
ble contraction of two second-order tensors works only if we deal with one stress-like
tensor and one strain-like tensor. When evaluating the tensorial norm of the stress
tensor, defined as ‖σ‖ = √σ : σ, we have to be careful and realize that

σ : σ = σijσij = σ2

11 + σ2

12 + σ2

13 + . . .+ σ2

31 + σ2

32 + σ2

33 =

= σ2

11
+ σ2

22
+ σ2

33
+ 2

(

σ2

23
+ σ2

31
+ σ2

12

)

[20]

while

σTσ = σ2

11
+ σ2

22
+ σ2

33
+ σ2

23
+ σ2

31
+ σ2

12
[21]
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So it is not possible to replace the tensorial norm of the stress tensor by the Euclidean
norm of the column matrix of stress components! Instead, we have to insert a diagonal
scaling matrix

P = diag [1, 1, 1, 2, 2, 2] [22]

and express the tensorial norm of a stress-like quantity in the engineering notation as

‖σ‖σ =
√
σTPσ [23]

When transcribing the double contraction of two strain-like tensors, it is also nec-
essary to insert a scaling matrix, but not the same one as for two stress-like tensors.
Since the shear components have already been doubled, the corresponding scaling fac-
tors are now 1/2 instead of 2. So it turns out that the appropriate scaling matrix is the
inverse of P and the tensorial norm of ε is in the engineering notation evaluated as
‖ε‖ε =

√
εTP−1ε.

For the purpose of volumetric-deviatoric decomposition we need to establish the
engineering counterpart of the unit second-order tensor (Kronecker delta). This is the
tensor corresponding to the unit hydrostatic state, represented by a column matrix

δ = {1, 1, 1, 0, 0, 0}T [24]

The volumetric-deviatoric decomposition is in the engineering notation based on pro-
jection matrices IV = 1

3
δδT and ID = I − IV = I − 1

3
δδT . However, in the

engineering transcription of expressions [2] and [15] for the elastic stiffness, the sym-
metric fourth-order unit tensor IS must be replaced by the inverse scaling matrixP −1

(and not simply by the unit matrix I):

De = 3λIV + 2µP−1 = 3KIV + 2G(P−1 − IV ) [25]

The generalized Hooke’s law written separately for the volumetric and deviatoric part
then reads

σV = 3KεV [26]

s = 2GP−1e [27]
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3. Boundary value problem of linear elasticity

If we restrict attention to sufficiently small changes of the initial configuration, a
deformable body occupying a spatial domain V can be described by the following
equations:

εij =
1

2

(

∂ui
∂xj

+
∂uj
∂xi

)

. . . strain-displacement (kinematic) eqs. [28]

σij = De
ijklεkl . . . stress-strain (constitutive) equations [29]

∂σij
∂xj

+ b̄i = 0 . . . equilibrium (static) equations [30]

In engineering notation, these equations read

ε = ∂ u [31]

σ = De ε [32]

∂Tσ + b̄ = o [33]

In the above, u = {u1, u2, u3}T is the displacement vector, ε is the column matrix
of engineering strain components, σ is the column matrix of stress components, b̄ =
{b̄1, b̄2, b̄3}T is the vector of body forces,

∂ =











































∂

∂x1

0 0

0
∂

∂x2

0

0 0
∂

∂x3

0
∂

∂x3

∂

∂x2

∂

∂x3

0
∂

∂x1

∂

∂x2

∂

∂x1

0











































[34]

is an operator matrix that represents the engineering-notation counterpart of the sym-
metric gradient operator from [28], and De is the elastic material stiffness matrix, for
isotropic materials given by [25].

The basic equations must be supplemented by appropriate boundary conditions,

ui = ūi on Su . . . essential (kinematic) boundary conditions [35]

σijnj = t̄i on St . . . natural (static) boundary conditions [36]
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or, equivalently,

u = ū on Su [37]

nσ = t̄ on St [38]

where

n =





n1 0 0 0 n3 n2

0 n2 0 n3 0 n1

0 0 n3 n2 n1 0



 [39]

is a matrix containing the components ni of the unit outward normal to the bound-
ary, and symbols with an overbar denote given quantities—the surface tractions
t̄ = {t̄1, t̄2, t̄3}T prescribed on a part St of the boundary of V , and the displace-
ments ū = {ū1, ū2, ū3}T prescribed on the remaining part Su of the boundary of
V .

For problems formulated in a reduced space, e.g., under the assumptions of plane
stress, plane strain, or axial symmetry, all matrices can be reduced accordingly.

4. Discretization by finite elements

In the standard displacement version of the finite element method (FEM), which is
a generalization of the direct stiffness method of structural analysis, the displacement
components are approximated as linear combinations of suitably chosen interpolation
functions (in FEM called the shape functions) NI(x), I = 1, 2, . . .Nnod. A typical
property of the FE shape functions is that each of them is associated with one ofNnod

nodes of the model, and the value of the I-th shape function is equal to one at node
number I and equal to zero at all the other nodes. The displacement approximation
reads

ui(x) ≈
Nnod
∑

I=1

NI(x)dIi, i = 1, 2, 3 [40]

where dIi are unknown displacement parameters. It is convenient to introduce matrix
notation and collect the displacement parameters into a vector (column matrix) d and
the shape functions into a matrix N . The approximation [40] is then rewritten as

u(x) ≈N(x)d [41]

The kinematic (strain-displacement) equations [31] provide an approximation of the
strains,

ε(x) = ∂u(x) ≈ ∂N(x)d = B(x)d [42]
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whereB = ∂N is the strain-displacement matrix (often called simply the B-matrix),
containing the derivatives of the shape functions with respect to the spatial coordi-
nates.

Substituting the strain approximation [42] into the constitutive equations [32] we
obtain the stress approximation

σ(x) ≈De(x)B(x)d [43]

where the argument x at De marks explicitly that the elastic properties may be
position-dependent.

It is clear that, by construction, the approximations of displacements, strains and
stresses satisfy the kinematic and constitutive equations exactly.The static equations
still need to be enforced. However, as the adopted approximations depend only on
a finite number of unknown displacement parameters, the differential equations of
equilibrium [33] in general cannot be satisfied exactly at every point of the body, i.e.,
in a strong sense. Instead of using these equations directly, we replace them by the
principle of virtual work, i.e., by the requirement that the equality

∫

V

σT δε dV =

∫

St

t̄
T
δu dS +

∫

V

b̄
T
δu dV [44]

must hold for an arbitrary virtual displacement field δu and virtual strain field δε
satisfying the strain-displacement equations, δε = ∂ δu in V , and the homogeneous
kinematic boundary conditions, δu = o on Su. Equation [44] is the so-called weak
form of the equilibrium equations. If the solution is sufficiently smooth, the strong
form [33] and the weak form [44] are fully equivalent. However, when constructing
equations for the displacement parameters we test the virtual work equality only for
those virtual displacement fields (and the corresponding virtual strain fields) that have
the same form as the approximate solution. In other words, we consider the virtual
displacement as a linear combination of the shape functions,

δu(x) =N(x) δd [45]

where δd is a column matrix of (arbitrary) virtual displacement parameters. The cor-
responding virtual strain field derived from the kinematic equations is then given by

δε(x) = B(x) δd [46]

Substituting [43], [45] and [46] into the virtual work equality [44], we obtain the
discretized weak form

∫

V

dTBT (x)DT
e (x)B(x) δd dV =

∫

St

t̄
T
N (x) δd dS +

+

∫

V

b̄
T
N(x) δd dV [47]
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Taking into account that d and δd are not functions of the spatial coordinates and as
such can be taken out of the integrals, we can rewrite [47] as

dTKT
e δd = fText δd [48]

where

Ke =

∫

V

BT (x)De(x)B(x) dV [49]

is the (global) elastic stiffness matrix and

f ext =

∫

St

NT (x)t̄ dS +

∫

V

NT (x)b̄ dV [50]

is the (equivalent) external force vector. Equation [48] is satisfied for an arbitrary
column matrix of virtual displacement parameters δd if and only if

Ke d = f ext [51]

These are the discretized equations of equilibrium from which it is possible to compute
the unknown displacement parameters d.

5. Material nonlinearity

The actual material behavior can be approximated as linear elastic only within a
limited range of strains and strain rates. In general, the deformation processes taking
place in real materials involve certain dissipative mechanisms, which lead to irre-
versible changes. This can be taken into account by refined models, which develop
nonlinear stress-strain relations and consider the influence of the loading history. The
current stress could be described by a functional of the previous strain history, but for
numerical applications it is more convenient to replace the dependence on the entire
history by the dependence on the current values of some additional internal variables
characterizing the state of the material, such as the plastic strains in elastoplasticity.

Collecting all the internal variables into an object denoted as α (scalar, tensor, or
even a collection of scalars and tensors of various orders), we can formally write the
general constitutive equations as

σ = σ̃(ε,α) [52]

where σ̃ denotes the constitutive operator. In the FEM, the stress approximation [43]
is replaced by

σ(x) ≈ σ̃(B(x)d,α(x)) [53]

The discretized weak form of the equilibrium equations now reads
∫

V

σ̃T(B(x)d,α(x)) B(x) δd dV =

∫

St

t̄
T
N(x) δd dS +

+

∫

V

b̄
T
N(x) δd dV [54]
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or, equivalently,

fTint(d,a) δd = fText δd [55]

where

f int(d,a) =

∫

V

BT (x) σ̃(B(x)d,α(x)) dV [56]

is the column matrix of (equivalent) internal forces, which now depend not only on the
column matrix of displacement parameters d but also on the column matrix a, which
collects the values of internal variables α at all material points that are used by the
numerical integration scheme (the integral over the domain V must now be approxi-
mated by a suitable numerical quadrature method). The final form of the discretized
equations of equilibrium is then

f int(d,a) = fext [57]

6. Thermodynamic framework

Since in general the internal variables evolve during the loading process, equations
[57] must be supplemented by suitable equations governing the evolution of internal
variables. Such evolution equations could be directly postulated in the form

α̇ = g(ε̇, ε,α) [58]

where g is a suitable function dependent on the current state of the material (reflected
by the state variables ε and α) and on the imposed strain rate ε̇.

To make sure that the material model is consistent with the second law of ther-
modynamics, it is important to check that the internal entropy production cannot be
negative. For simplicity, we restrict attention to isothermal processes. As shown in
Jirásek et al. (2002), Chapter 23, the second law in combination with the first law
leads to the condition that there must exist a free energy potential ψ(ε,α) such that
the quantity

D = σ : ε̇− ψ̇ [59]

is nonnegative for any admissible process. The differenceD between the stress power
σ : ε̇ and rate of free energy ψ̇ represents the dissipation rate per unit volume, in short
referred to as the dissipation.

In the simplest case of an elastic material, the free energy potential depends only
on the strain and no internal variables are needed. The dissipation can then be ex-
pressed as

D = σ : ε̇− ∂ψ

∂ε
: ε̇ =

(

σ − ∂ψ

∂ε

)

: ε̇ [60]
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Since individual components of the strain rate are independent and their signs are not
constrained, the condition D ≥ 0 can be satisfied only if the term in the parentheses
vanishes, i.e., if

σ(ε) =
∂ψ(ε)

∂ε
[61]

This is the stress-strain law, derived directly from the free energy potential.

The line of reasoning used in the previous paragraph is based on the tacit assump-
tion that the stress depends on strain but not on the strain rate. This is indeed the case
in standard elasticity. However, if one admits a special type of viscoelastic behavior
with stress dependent on both the strain and the strain rate, equation [60] does not
describe the total stress but only its part related to the reversible (elastic) deformation
processes. An additional stress may arise from viscous effects and be dependent on
the strain rate. In this case, we consider

σQ(ε) =
∂ψ(ε)

∂ε
[62]

as the conservative part of stress, and we can denote the difference σ − σQ as the
dissipative stress, σD, because the dissipation is according to [59] given by D =
σD : ε̇. Instead of directly specifying the dependence of the dissipative stress on the
strain rate, it is more convenient to postulate the existence of a dissipation potential φ
and set, in analogy to [62],

σD(ε̇) =
∂φ(ε̇)

∂ε̇
[63]

The advantage is that the dissipation is then given by

D =

(

σ − ∂ψ

∂ε

)

: ε̇ = σD : ε̇ =
∂φ

∂ε̇
: ε̇ [64]

and if the dissipation potential φ is convex and has its minimum at ε̇ = 0, then the
dissipation is guaranteed to be nonnegative for any value of the strain rate ε̇.

For models with internal variables, the free energy ψ(ε,α) depends on the strain
and on internal variables. The dissipation evaluated as the difference between the
stress power and the rate of internal energy is now

D = σ : ε̇− ψ̇ =

(

σ − ∂ψ

∂ε

)

: ε̇− ∂ψ

∂α
: α̇ = (σ − σQ) : ε̇− βQ : α̇ [65]

where we have formally defined the (quasi)conservative thermodynamic forces con-
jugate to the internal variables as

βQ(ε,α) =
∂ψ(ε,α)

∂α
[66]
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The changes of internal variables are associated with certain dissipative processes
(e.g. with plastic slip). It is therefore natural to assume that the dissipation can be
expressed as

D =
∂φ

∂ε̇
: ε̇+

∂φ

∂α̇
: α̇ = σD : ε̇+ βD : α̇ [67]

where

βD =
∂φ(ε̇, α̇)

∂α̇
[68]

are the dissipative thermodynamic forces conjugate to the internal variables. The
dissipation potential φ(ε̇, α̇) is now a function of the rates of strain and of internal
variables. It may also depend on the values of strain and internal variables, but this
dependence has a secondary character.

We have established two expressions for the dissipation, given by [65] and [67],
but they describe the same physical quantity and must give the same result for any
combination of rates ε̇ and α̇. This leads to the identities σ−σQ = σD and−βQ =
βD. The first identity provides the constitutive law

σ = σQ(ε,α) + σD(ε̇, α̇) [69]

and the second is an implicit form of the evolution equation

βQ(ε,α) + βD(ε̇, α̇) = 0 [70]

If [70] is solved for α̇ as unknown, we obtain the explicit evolution equation in the
form [58]. The advantage of the “implicit” approach based on the dissipation potential
φ is that thermodynamic admissibility of the model is automatically ensured if φ is
convex and has its minimum at ε̇ = 0, α̇ = 0.

Conversion of the evolution equation to the explicit form can be based on the
Legendre-Fenchel transform, which converts the dissipation potential into the so-
called dual dissipation potential

φ∗(σD,βD) = max
ε̇,α̇

(σD : ε̇+ βD : α̇− φ(ε̇, α̇)) [71]

Based on this dual potential, the rate of internal variables can be expressed explicitly
as

α̇ =
∂φ∗(σD,βD)

∂βD
[72]

Dissipation potentials corresponding to viscous dissipative mechanisms are typi-
cally smooth and their derivatives are well defined in the classical sense. On the other
hand, standard rate-independent plasticity or damage models give rise to non-smooth
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potentials. Fortunately, all presented equations remain valid if the derivatives are rein-
terpreted in the sense of subdifferentials; for more details see textbooks on convex
analysis (Rockafellar, 1970) or Chapter 23 in Jirásek et al. (2002).

Material models with evolution equations derived from a dissipation potential are
often referred to as generalized standard materials. The most popular example is
the theory of plasticity with an associated flow rule. Such models comply with the
postulate of maximum dissipation, which plays an essential role e.g. in the deriva-
tion of the fundamental theorems of classical plastic limit analysis. However, let us
emphasize that the dissipation potential provides a convenient but relatively restricted
framework for constitutive modeling. For instance, nonassociated flow rules may be
more realistic for certain materials and, if formulated properly, they can still remain
thermodynamically consistent. The dissipation inequality D ≥ 0 is easy to verify if
the evolution equations are derived from a convex dissipation potential, but this does
not mean that it is violated for all other models.

Acknowledgements

Financial support of the Ministry of Education of the Czech Republic under Re-
search Plan MSM 6840770003 is gratefully acknowledged.

7. References

Jirásek M., Bažant Z. P., Inelastic Analysis of Structures, John Wiley and Sons, Chichester,
2002.

Rockafellar R. T., Convex Analysis, Princeton University Press, Princeton, NJ, 1970.



ANNEXE POUR LE SERVICE FABRICATION
A FOURNIR PAR LES AUTEURS AVEC UN EXEMPLAIRE PAPIER
DE LEUR ARTICLE ET LE COPYRIGHT SIGNE PAR COURRIER

LE FICHIER PDF CORRESPONDANT SERA ENVOYE PAR E-MAIL

1. ARTICLE POUR LA REVUE :

REGC – 11/2007. Damage and fracture in geomaterials

2. AUTEURS :

Milan Jirásek

3. TITRE DE L’ARTICLE :

Basic concepts and equations
of solid mechanics

4. TITRE ABRÉGÉ POUR LE HAUT DE PAGE MOINS DE 40 SIGNES :

Basic concepts and equations

5. DATE DE CETTE VERSION :

September 17, 2007

6. COORDONNÉES DES AUTEURS :

– adresse postale :
Department of Mechanics
Faculty of Civil Engineering
Czech Technical University in Prague
166 29 Prague, Czech Republic

Milan.Jirasek@epfl.ch
– téléphone : +420-224354481

– télécopie : +420-224310775

– e-mail : milan.jirasek@fsv.cvut.cz

7. LOGICIEL UTILISÉ POUR LA PRÉPARATION DE CET ARTICLE :

LATEX, avec le fichier de style article-hermes2.cls,
version 1.23 du 02/08/2006.

8. FORMULAIRE DE COPYRIGHT :

Retourner le formulaire de copyright signé par les auteurs, téléchargé sur :
http://www.revuesonline.com

SERVICE ÉDITORIAL – HERMES-LAVOISIER

14 rue de Provigny, F-94236 Cachan cedex
Tél. : 01-47-40-67-67

E-mail : revues@lavoisier.fr
Serveur web : http://www.revuesonline.com


