Chapter (3)
3. Mathematical Formulations and Numerical M odeling

3.1 Introduction:

The following assumptions were made in developing the mathematical

formulations of laminated plates:
1. All layers behave elastically;
2. Displacements are small compared with the plate thickness;
3. Perfect bonding exists between layers;
4. The laminate is equivalent to a single anisotropic layer;
5. The plate is flat and has a constant thickness;
6. The plate buckles in a vacuum and all kinds of damping are neglected.

Unlike homogeneous plates, where the coordinates are chosen solely based
on the plate shape, coordinates for laminated plates should be chosen carefully.
There are two main factors for the choice of the coordinate system. The first
factor is the shape of the plate.Where rectangular plates will be best represented
by the choice of rectangular (i.e. Cartesian) coordinates. It will be relatively easy
to represent the boundaries of such plates with coordinates. The second factor is
the fiber orientation or orthotropy. If the fibers are set straight within each
lamina, then rectangular orthotropy would result. It is possible to set the fibers in
a radial and circular fashion, which would result in circular orthotropy. Indeed,
the fibers can also be set in elliptical directions, which would result in eliptical

orthotropy.

The choice of the coordinate system is of critical importance for laminated
plates. This is because plates with rectangular orthotropy could be set on
rectangular, triangular, circular or other boundaries. Composite materials with

rectangular orthotropy are the most popular, mainly because of their ease in



design and manufacturing. The equations that follow are developed for materials

with rectangular orthotropy.

Fig. 3.1 below shows the geometry of a plate with rectangular orthotropy
drawn in the cartesian coordinates X, Y, and Z or 1, 2, and 3. The parameters
used in such a plate are: (1) the length in the X-direction, (a); (2) the length in
the Y — direction (i.e. breadth), (b); and (3) the length in the Z — direction (i.e.
thickness), (h).
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Fig. 3.1 The geometry of alaminated composite plate

3.2 Fundamental Equations of Elasticity:

A first — order shear deformation theory (FSDT) is selected to formulate
the problem. Consider a thin plate of length a, breadth b, and thickness h as
shown in Fig. 3.2(a), subjected to in — plane loads Ry, Ry and R,y as shown in
Fig. 3.2(b). The in — plane displacements u (x,y,z) and v (x,y,z) can be

expressed in terms of the out of plane displacement w (x, y) as shown below:



The displacements are:

d
ulx,y,2) = u,(x,y) - Z%}
v(x,v,2) = v,(x,y) — Z(Z_‘;CV } (3.1)

w(x,y,z) = wy(x,y) )

Where u,,, v, and w, are mid — plane displacements in the direction of the x, y

and z axes respectively; z is the perpendicular distance from mid — plane to the

layer plane.
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Fig. 3.3 Geometry of an n-Layered laminate

The plate shown in Fig. 3.2 (a) is constructed of an arbitrary number of

orthotropic layers bonded together asin Fig. 3.3 above.
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The strains are;

_O0u, 0w 1 <6W)2 )
T ox ~ “oxz " 2\ox
v, 9*w 10w\’
€y = =2 — 7z —(—) > (3.2)
dy dy 2\0y
_ 0y, . ou, 5 92w . <6W) <6W)
Y= dx 0y Zaxay dx/ \dy/J
The virtual strains:
Sc. = d 5 92 5 +6W d 5 )
T ox Mo T 52 T xax oY
d 92 ow 0
06y, = =0V, — Z7— 6w + ——4w > (3.3)
dy dy dy dy
6—66 +65 5 626+6W66+666W
V= ax 0% dy to Zaxay v dx dy Y ox WayJ
The virtual strain energy:
5U =f SeTadV (3.4)
v
But,
o= Ce
Where,
C = Cl](l,] == 1,2,6)
.~ 6U =f Se’ C Se dV (35)
v

If we neglect the in plane displacements u, and v, and considering only the

linear terms in the strain — displacement equations, we write:

62

be = —z| =— |ow (3.6)




3.3 TheNumerical Method:

The finite element is used in this analysis as a numerical method to predict
the buckling loads and shape modes of buckling of laminated rectangular plates.
In this method of analysis, two types of elements are chosen. These elements are
the four — noded and the eight — noded bilinear rectangular elements of a plate.
Each element has three degrees of freedom at each node. The degreesof freedom
are the lateral displacement (w), and the rotations (¢) and () about the (X) and
(Y) axes respectively.

The secondary effects of shear deformation, are also considered in the
present method. The shear deformation is formulated by the first — order shear
deformation theory (FSDT). The finite element method is formulated by the
energy method. The numerical method can be summarized in the following

procedures.

1. The choice of the element and its shape functions.

2. Formulation of finite element model by the energy approach to develop both
element stiffness and differential matrices.

3. Employment of the principles of non — dimensionality to convert the element
matrices to their non — dimensionalized forms.

4. Assembly of both element stiffness and differential matrices to obtain the
corresponding global matrices.

5. Introduction of boundary conditions as required for the plate edges.

6. Suitable software can be used to solve the problem (here two software were
utilized, FORTRAN and ANSYS).

For an n noded element, and 3 degrees of freedom at each node.

Now express w in terms of the shape functions N (give in Appendix (B) ) and

noded displacements a®, equation (3.6) can be written as:

de = —zBda® (3.7)



Where,

_[o2N; 92N, 02N,
C|ox2 9y? Zaxay

BT
and
a®=[w;] i=1n
The stress — strain relation is:

c=Ce

Where ¢ are the material properties which could be written as follows:

C=|Ciz Cyp Cy

Ci1 Ci2 C16]
Ci6 Ci6 Cee

Where C;; are given in Appendix (A).
SU = f (B6a®)T(Cz?)Ba®dV
%4
Where V' denotes volume.

SU = 6aeTf BTDBa®dx dy = §a®TK%a®
v

(38)

Where D;; = ’,}zleZk"_l C;jZ* dZ is the bending stiffness, and K¢ is the element

stiffness matrix which could be written as;

K¢ = f BTDB dxdy

(39)

The virtual work done by external forces can be expressed as follows: Refer to

Fig. (3.4).

Denoting the nonlinear part of strain by ¢’
SW = ff Se'Ta'dV = fc?e’TIV dxdy

Where

(3.10)
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Fig. 3.4 External for ces acting on an element

Hence
Tro
Z—W aé‘w 0 a—6W Nx
5W=ff ol ; ay Ny |dx dy
_ _ —_ N
lay l 0 3y ow 5WJ xy

This can be written as;

0 5 T ow
3%l N, N
sW :ff [669( [N" o 9% ax dy
—sw| Y TV —
lay J ayJ

Noww = Niaf

(3.11)

(3.12)

(3.13)



N7 aN;
Ay N

SW = 5a¢T ff glj\;i [Nx"y gj\j a® dx dy (3.14)
3y | layJ

dN;

S ub s titute P, = =Ny, B, = =N, By, = =Ny,
0x
ON;

] 12 w8

Therefore, equation (3.15) could be written in the following form:

SW = —8a°TKPa® (3.16)

wW h e r e
dN;

ff e, %]
lay

KPis the differential stiffness matrix known also as geometric stiffness matrix,

a® dx dy (3.15)

aN;

0x dx dy

initial stress matrix, and initial load matrix.
The total energy:
U+ W =0 (3.17)
Since §a® is an arbitrary displacement which is not zero, then
K¢a® — KPa® =0 (3.18)

Now let us compute the elements of the stiffness and the differential matrices.

K¢ = ff BTDB dx dy

_T

[ 62Ni [ aZNi |
d0x? dx?
02N Di1 D1z Dis 02N
K¢ :ff 6y21 Di; Dy, Dy 6y21 dx dy
92N, Dig Dzs Des 92N,
| 0x0y _2 0x0y |



The elements of the stiffness matrix can be expressed as follows:

K = 0%N; 0°N; *N 0%N; 0°N; 9D 0%N; 9°N; . 0%N; 0°N;
ff 19x2 9x2 2 9y? 9x2 16 9x0y dx2 12°9x2 9y2

5 0%N; 0°N; 9D 0%N; 9°N; oD 0%N; 0%N; oD 0%N; 0°N;

2 9y2 dy?2 26 9xdy dy? 16952 axay %6 9y2 9xdy

D d%N; 0°N,
Dee axay dx0dy

] dx dy (3.19)

The elements of the differential stiffness matrix can be expressed as follows;

KD_ff ONON, (N 0Ny ONON,) | ONONG] o
*ox ox dy 0x 0x 0y Y 0y dy xdy (3.20)

The integrals in equations (3.19) and (3.20) are given in Appendix (C).

The shape functions for a4 — noded element is shown below in Fig. 3.5.
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Fig. 3.5 A four nodedelement with local and global co — ordinates
The shape functions for the 4 — noded element expressed in global co — ordinates
(x,y) are asfollows:
w = Nyw; + Nypy + N3y + Nyw, + Nsp, + Netp,

+N;w3 + Ngp3 + Nop3 + Njgwy + Ny by + Nippy
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Where,
ow " ow
ox ' oy

The shape functions in local co — ordinates are as follows:

N, = + 4+ 2 2 3 2 2
i — ail aizr ai3s + ai4r + ai5rs + ai6s + ai7r + aigr s+ aigrs
+0a;10S> + aj73s + ajqprS3
N: = a;1 + Qjo7 + @j2S + Aial? + ;eSS + a;cS% + ;13 + aior?s + ajors?
j1 j2 j3 j4 j5 j6 j7 j8 j9

3 3 3
+0aj10S” + Aj1177S F AjgTS

The values of the coefficients a;; are given in the table in Appendix (B).

0%N; 0°N; 1
1= ff 32 3,2 L drds = 16 ai4Qj4 + 30707 + 3a18a]8 + az11a]11]

0%N; 0°N; 1
5 = ff 352 352 ) drds =16 [al6a]6 + 3 %i9%9 +3a;10a10 + a112a112]

0%N; 0°N;
3 = ff 372 592 dr ds = 16[al4a]6 + ;7059 + AjgAjp0 + az11a]12]

0%N; 0°N;
4 = ff 652 a‘r dr dS == 16[al6a]4 + alga]7 + alloajg =+ a112a111]

0%N; 0%N;
57 ff or? drds L drds = 8|aisays + aiaai1 + 20574 + Aiaay1;

2
+ 3 ai4aj5]

0%N; 0°N; )
6 = f 0rds 0r? dr ds = 8 |a;sajs + 2a;30)7 + Aj11Gjs + 3al9a]8

+ai12aj4]

0%N; 0°N; - 5 :
7= ff ds? 0rds Ldrds=38 AieQjs + Aiej11 T 3 %i9ls

9%N; 62 - 2 ]
ff O0rds 0s? Fdrds =8 Aislje + 3 %is%o + ;110
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0%N; 0°N; 4
ff ords 0rds Ldrds=4 Asdjs + Aisdji1 T 3 Aigdys + Aisdjiz

9
"' 3 di9%j9 + Aj110512 T Q4120511 T gai12aj12]

dN; aN

1
qi0 = drds =4 [aizajz + 3 (Bajzaj7 + 4aa;, + 3a;7a5;

4
+a;7059 + a;5055 + Ai5055 + Q1905 + Ai5a511 T Q47059 T+ 3 is%s + 4907

ai114;5) + 5 (aisaj12 + ajoajo + a;12a;5 + 907057 + 3031111 + 4114512

+a;12011) + 7 ai12aj12]

dN; ON; 1
ff 35 o5 07 4S = 4|tz t §(ai3a1'8 + ;555 + aga;z + 3a;3a19

4
+4a,6aj6 + 3a;100j3 + Aj5a12 + Aigaj10 + 3 ¢i9%9 + aj10aj8 + Aj120)5)

"'g (aisaji1 + ajgajg + a;110j5 + 904100510 + Aj11412 + Q120511 + 3242012)

1
+?ai11aj11

ON; N, 1
q12 = f - drds =4 [aizajg + §(3ai2aj8 + 2a;4a55 + 3a;7055

4 1
+3a;,a10 + 205056 + Aj9aj3 + 2034051, + 370510 + 3 4is%o + 3 %i9%s

+2ai11aj6)]

dN; ON; 1
3= ff Os ar d?‘ ds =4 [al3a]2 +3 (3611361]7 + 2a15a]4 + aigd;;

1 4
3 iso + = aj9a58 + 30410457

+a;3aj9 + 2a;60j5 + 3041005, + 206011 T 3

1
+2a;1,05,) + 5 (2a;6a512 + 3a;10a59 + 3a;a;; + 2ai11aj4)]
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The values of the integrals are converted from local co — ordinate (r, s) to global

co — ordinates as follows:
92N; aN; 4h,\  4n3b
ff dx2 0x? dxdy = 3 N~ e I
fj‘ 9%N; 62 v = 4h, _dam®
9yZ dy YT\ )BT T B
ff 0%N; 0°N; e dy = 3
9x? ay YT \hy )BT T B

ff 0%N; 0°N; e dy =
= dy? 6x2 Y=

Iy hy ab
B fj‘ 0%N; 0°N; e dy = <4) 4n?
57 )) ox? 0xdy ey = h2 15 =gz 15
fj‘ 0%N; 0°N; p _<4) _ 4n?
0xdy 6x2 dx dy = h2 16 = "5z 16

ff 0%N; 0°N; v = 3
dy? axay Y= h 17 = a? 1

ff 9%N; 62 v = 4 _4m
9x0y ay Y= \nz) " p2 18

fj‘ 0%N; 0°N; gy = 4 _4mn
axayaxay dx dy = nhy )" "ab 1

dN; aN hy bn
- h_x di0 — %Cho

fj‘ dN; aN h, _am
9y ay hy d11 — bn d11

dN; ON;

dx dy = q12
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dN; ON;

— dx dy = q13

In the previous equations h, = % and h, = % where a and b are the lengths of
the plate along the x — and y — axis respectively. n and m are the number of
elementsin the x — and y — directions respectively.
The elements of the stiffness matrix and the differential matrix can be written as
follows:

Kij = D117y + D11y + 2Dq613 + D173 + Dyyy + 2Dgg1g + 2D 675 + 2Dy

D _
Kij = Peryo + Py, (ry3 + 113) + P,1y4

or in the non — dimensional form

an3 (b\ a
Kij = <E) D11q; + 4mn (b) Di2q4 + 4n’ Dy + 4mn (b) D124

2 a~ 2

+4ng (%) D),q, + 4m? (%) D;6qg + 4n*Digqs + 4m® (E) D3647

+4mn (b) Dgsqo

n /b m ,a
Kilj)' = P E(E) qi0 + Piy(q12 + q13) + Py ;(E) Qv

where
a

! 1 !
0= (gm) 2 = (gm)P

The transformed stiffness are as follows:

C1q = C{1c* +2¢?s%(C{, + 2Cg) + Cyps*
C12 = c?s2(C{, + Cpy + 4Clg) + C1,(c* + s*)
C16 = cs[C{ic* + Chy8% — (C{, + 2Cs) (c? — s2)]
Cyy = C{18* +2¢%s%(Cq, + 2CLg) + Cpyc?

13



Cye = cs[C{1s% + Cypc? — (C{y + 2Ctg)(c? — s2)]

Coe = (C{; + Cpy + 2C1,)Cc%s% + Cls(c? — %)

Where
Ey
C{; =
1—v,vy
, vy1E V1B
Cip = 1 1
— V12021 V12021
E,
Cyy =
1—v1,vy
Caq = Go3, Css = G3andCee = Gy

E; and E, are the elastic moduli in the direction of the fiber and the transverse
directions respectively, v is the Poisson's ratio. G;,, G;3, and G,5 are the shear
moduli in the x — y plane, y— z plane, and x — z plane respectively, and the
subscripts 1 and 2 refer to the direction of fiber and the transverse direction

respectively.
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APPENDICES

Appendix (A)
The transformed material properties are:

C11 = C{;c0s*0 + C},sin*0 + 2(C{, + 2C¢)sin*Hcos?0
C1, = (C{4 + Cyp — 4Clg)sin*Ocos?0 + Ci,(cos*O + sin*0)
Cyy = C{15in*0 + Cpycos*0 + 2(C{, + 2C¢)sin*Gcos?0
C16 = (C{4 — C{, — 2C¢g)c0s30sinf — (Cyy — C{, — 2C4g)sin3OcosH
Cy6 = (C{; — C{, — 2C}¢)cosOsin30 — (C,, — C{, — 2C}¢)sinfcos30

Coe = (C{; + C35 — 2C1, — 2Ctg)sin?Ocos?O + Clg(sin*6 + cos*0)

whereC{; = o ,C)y = 2 ,C{, = _Vazbz ,Cle = G12
— V12V21 1—vipvy 1—vyvo
Appendix (B)
a; /8
1| i1 l l [ [
N;
N, 2 -3 | 3 0| 4 0 1 0 0 -1 1 1
1 -1 1 -1 ] -1 0 1 -1 0 0 1 0
-1 1 -1 0 1 1 0 0 -1 1 0 -1
2 -3 -3 0 4 0 1 0 0 1 -1 -1
1 1] -1 -1 1 0 1 1 0 0 -1 0
1 -1 ] -1 0 1 -1 0 0 1 1 0 -1
2 3 3 0 4 0| 1 0 0 1) -1 -1
1] -1 -1 1 -1 0 1 1 0 0 1 0
-1 -1 -1 0| 1 1 0 0 1 1 0 1
2 3 | -3 0| 4 0| 1 0 0 1 1 1
-1 -1 1 1 1 0 1 -1 0 0 -1 0
1 1 -1 O | -1 -1 0 0 -1 1 0 1
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Appendix (C)
The integrals in equations (13) and (14) are given in nondimensional form as

follows (limits of integration r,s = —1 tol):
0%N; 0°N; _ 4hy ff 0%N; 0°N; o
ff ax2 ax2 or? ar >

- — (16al 4a] 4 + 48al 7a] 7 + 16al 8a] 8/3 + 16al 11a] 11)

mR
ff 0%N; 0°N; 4h ff 0%N; 0°N; o
dy? ay 0s? 65 >
Am3R3
=— (164a; 6a;6 + 16a;9a;9/3 + 48a; 10a; 19 + 164, 1,a;15)
ff 92 N; 62 ff 0%N; 0°N; o
ax2 oy2 X " hyhy ) o7 55z drds
= 4mnR(16ai,4aj,6 + 16q;,a;9 + 16a;ga; 1o + 16ai,11aj,12)
0%N; 0°N; ff 0%N; 0°N; o
f dy? oz xd = hyhy )] 057 5 drds
= 4mnR(16ai,6aj,4 + 16q;9a;; + 16a; 1905 + 16ai,12aj,11)
0%N; 0°N; 0%N; 0°N;
Jf wxay= o f
dx0y axay h h, J) 0rds aras

4dmnR [4ai,5aj,5 + 4(3ai,5aj,11 + 4ai,8aj,8)/3

+4(3a; 5012 + 4a;9a;9)/3 + 4(a; 110512 + A;120511)F 36ai,12aj,12/5]

ON; ON; ON; ON,
ff@xax dx dy = hffarar

= m_ [4al 2a] 2 + 4(3al 2a] 7 + 4al 4a] 4 + 3al 7a] 2)/3

+4(a; a9+ ;505 + ;90 2)/3 + 4(3a;5a;11 + 3a;7a;9 + 4a;5a; g
+3a;90a;7 +3a;11a5)/9 +4(a; 5012 + A; 909 + A;1205)/5

+36a;7a;7/5 + 12a; 110;11/5 + 4(a; 1105 12 + Q;,120j11)/5 + 4ai,12aj,12/7]

ffaN oN, ffaN o,
3y 3y = h,)) @s s
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mR
- [4a13a]3 + 4(al3a]8 + alSaJS +a18a] 3)/3

+4(3az,3a],10 +4a;6a; 6+ 3a;100j3)/3 +4(3a;5a;11 + ;8058 + a;110;5)/5
+4(3a; 5012 + 30,8010 + 44,909 + 3a; 100 + 3a;12a;5)/9
+364a;10a)10/5 + 4(a; 11012 + A;1205,11)/5 + 12a; 1,0 12/5 + 4a;11a;,11/7]

0N ON; ff oN, N,
dxdy = || 5 5¢

= 4az,2a],3 +4(a; 2055 + 2a; 40;5 + 3a;7a;5)/3 + 4(3 a;2aj10 + 20,5056
+a,9a;3)/3 + 4(2a;40; 11 + 3a;7a;8)/5 + 4(6a; 401, + 94,70 1
+4a;5a; 9+ a; 908 + 60a;11a;6)/9 + 4(3a;9a; 10 + 20;120;,6)/5

ff dN; dN; ff JdN; aN
dy ox dx dy = ds or

= 4a;3a;, +4(3a; 307 + 2a;5a; 4 + a;5a;,)/3 + 4( ;3059 + 20,60 5

+30a;10a;2)/3 +4(6a; 6011 + a; 809 + 40,90 g + 90a;10a; 7 + 64,50, 4)/9
+4(2a; 6012 + 30a;,10a;9)/5 + 4(3a;5a; 7 + 2a;11a;4)/5

ff 0%N; 0°N; ff 0%N; 0°N; o
0x? axay or? aras >
= 4n2[8ai,4(aj,5 +aq, + aj,12) +16(a; ;058 + ailgaj,9/3)]
ff 0%N; 0°N; ff 0%N; 0%N; o

dxdy ax2 orads ar >
= 4n? [8aj,4(ai,5 +a;; + ai,12) + 16a; ga;; + 16ai,9aj,8/3]
ff 0%N; 0°N; ff 0%N; 0°N; o

dy? axay 0s? aras >
= 4m2R2[8ai,6(aj,5 + aj,11 + aj,12) +16a; 10059 + 16ai,9aj,8/3]
ff 0%N; 0°N; ff 0%N; 0°N; 4

dx0dy ay drds 65 >

= 4m2R2[8aj,6(ai,5 + ai,11 +a4,) + 16a;9a;10 + 16ai,8aj,9/3]

a

In the above expressions h, = ~ h, = % where a and b are the dimensions of

the plate in the x — and y — directions respectively. n and m are the number of
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elements in the x — and y — directions respectively. Note that dx = %dr and

dy = % ds where r and s are the normalized coordinates, and R = a/b.

18



