
How to use the MATLAB FFT2-routines
Harald E. Krogstad, NTNU, 2004

This short note describes how the MATLAB functions for two-dimensional Fast Fourier
transforms may be used for �ltering and signal processing. The MATLAB reference is rather
sketchy and does not provide much help for the inexperienced user. We shall, however,
assume that the reader knows the elementary properties of the Fourier transform.

1 The 1D FFT

Let us �rst of all recall that the Fast Fourier Transform (FFT) is not a new and strange
Fourier transform, but simply an e¤ective numerical algorithm for carrying out discrete
Fourier transforms (DFTs). For a vector X= fxngNn=1, the DFT Y= fyrg

N
r=1 is de�ned as

yr =
NX
n=1

xne
� 2�i(n�1)(r�1)

N : (1)

This is MATLAB�s de�nition. Other de�nitions are possible, so check your other sources
for a +-sign in the exponent, or a factor N�1 or N�1=2 in front of the sum! As long as we
are consistent, all de�nitions are equally good.

Note that Y in general will be complex even if X is real. However, y0 and yN
2
+1 will always

be real if X is real (note that yN
2
+1 exists only when N is even). It is easy to show that

the inverse DFT (bringing back X from Y) is simply

xn =
1

N

NX
r=1

yre
2�i(n�1)(r�1)

N : (2)

The sign in the exponent has now changed, and we need a factor N�1 in front of the sum.
In MATLAB, the two operations are computed simply by

Y = �t (X) ;

X = i�t(Y): (3)

Try this on some vectors!

Note that the result of i�t (�t (X)) will be de�ned complex by MATLAB, even if X is
real. However, the imaginary parts should be of the order of the machine accuracy.

2 The 2D FFT

Consider a matrix

A =

264 a11 � � � a1N
...

. . .
...

aM1 � � � aMN

375 : (4)

1

The MATLAB 2-dimensional Fourier transform of A is de�ned as the complex matrix

Y = �t2(A) =

264 y11 � � � y1N
...

. . .
...

yM1 � � � yMN

375 (5)

where

yrs =
MX
m=1

NX
n=1

amne
� 2�i(m�1)(r�1)

M
� 2�i(n�1)(s�1)

N : (6)

The MATLAB index convention complicates the expression somewhat. For the discrete
Fourier transform it is more convenient to let arrays run from 0 to M � 1.
In order to reproduce A from Y by an inverse Fourier transform, it is now necessary to
compute

amn =
1

MN

MX
r=1

NX
s=1

yrse
+
2�i(m�1)(r�1)

M
+
2�i(n�1)(s�1)

N ; (7)

and this is carried out by
A = i�t2 (Y) (8)

This is about all the reference guide tells you.

What if we want to do something with the Fourier transform, for example some kind of
�ltering? A typical application would be that A is a digitized image, and famng are the
pixel values. The pixel values are obtained from the image, I(x; y); by a sampling,

amn = I (�x(m� 1);�y(n� 1)) ;
m = 1; � � � ;M; n = 1; � � � ; N: (9)

The constants �x and �y are called the respective sampling intervals.

In general, a linear �lter operation of a 2D function f on R2 is a convolution f ! T � f
de�ned as

T � f (x) =
Z
R2
f(x� y)T (y) dy (10)

By de�ning the continuous 2D Fourier transform as

F(f)(k) =
Z 1

�1

Z 1

�1
f(x)e�ikxdx; (11)

the �ltering of the image, I ! h � I amounts to a multiplication in the Fourier domain:

F(T � I)(k) = F(T)(k)�F(I)(k): (12)

The result is �nally obtained by an inverse Fourier transform,

T � I(x) = 1

(2�)2

Z 1

�1

Z 1

�1
F(T � I)(k)eikxdk: (13)

The �lter may be a low pass �lter, say,

F(T)(k) =
�
1; jkj � k0
0; jkj > k0

; (14)

2

a high pass �lter,

F(T)(k) =
�
0; jkj � k0
1; jkj > k0

; (15)

or de�ned by some other function of k (For many commonly used �lters, T is actually what
is known as a generalized function).

The purpose of the rest of this note is to teach you how to carry out this type of operation
in MATLAB.

2.1 Real data

Most images or other two-dimensional data are real, that is, I(x) consists of real numbers.
However, the Fourier transform will generally be complex, although it then follows from the
de�nition that

F(I)(�k) = F(I)(k): (16)

This is an important equation:

If we know that the image is real, it is su¢ cient to know F(I) for only �half�of the k-values.
For example, it is su¢ cient to know F(I)(k) where k = (kx; ky) for kx � 0.
The second important observation is that when the �lter is real, that is, T (x) is a real
function, then also

T � I(x) (17)

should be real for all x. This is a very important check on what we have been doing is
correct.

Due to numerical rounding errors, the answer in MATLAB will have very small imaginary
parts (compared to the real parts). As long as the imaginary parts are of the order of the
machine accuracy (typically around 10�15 if the data are of order one), this is nothing to
worry about.

2.2 How to locate F(I)(k) in FFT2(A)

Let us �rst look at the connection between Y = �t(A) and F(I). Unfortunately, this is
rather tricky:

yrs =
MX
m=1

NX
n=1

amne
� 2�i(m�1)(r�1)

M
� 2�i(n�1)(s�1)

N

=
1

�x�y

MX
m=1

NX
n=1

I (�x(m� 1);�y(n� 1)) e�
2�i�x(m�1)(r�1)

�xM
� 2�i�y(n�1)(s�1)

�yN �x�y

t
1

�x�y

Z (M�1)�x

0

Z (N�1)�y

0
I(x; y)e

� 2�i
�xM

(r�1)x� 2�i
�yN

(s�1)y
dxdy (18)

= F(I)
�
2�i

�xM
(r � 1); 2�i

�yN
(s� 1)

�
:

3

For the approximation to be good, the sampling intervals �x and �y have to be su¢ ciently
small. Moreover, the integral will only cover the region

x 2 [0;�x(M � 1)]� [0;�y(N � 1)];

and hence we prefer that M and N are large.

The matrix Y gives us an approximation to the Fourier transform on a grid of k-values,
namely

kx =
2�i

�xM
(r � 1); r = 1; � � � ;M;

ky =
2�i

�xN
(s� 1); s = 1; � � � ; N: (19)

There is only one little complication. If we look at the de�nition of Y , and assume that
r < M=2 and s < N=2, then

y(M�r+1)(N�s+1) =
MX
m=1

NX
n=1

amne
� 2�i(m�1)((M�r+1)�1)

M
� 2�i(n�1)((N�s+1)�1)

N

=

MX
m=1

NX
n=1

amne
� 2�i(m�1)(M�r)

M
� 2�i(n�1)(N�s)

N (20)

=

MX
m=1

NX
n=1

amne
� 2�i(m�1)(�r)

M
� 2�i(n�1)(�s)

N = y�r;�s;

since exp (2�im) = 1 for all integers m. This means that for indices larger than about M=2
and N=2, we do not really obtain the Fourier transform for wavenumbers according to Eqn.
19, but instead the Fourier transform for negative wavenumbers.

To sum up: The 2D FFT computed from MATLAB, contains an approximation to the
Fourier transform on a discrete grid ranging from about � �

�x to
�
�x in steps of �kx =

2�
M�x ,

and similarly for ky.

The following small piece of MATLAB code computes these wavenumbers in the correct
locations and in the standard matrix format created by meshgrid:

kx1 = mod(1/2 + (0:(M-1))/M , 1) - 1/2;

kx = kx1*(2*pi/deltax);

ky1 = mod(1/2 + (0:(N-1))/N , 1) - 1/2;

ky = ky1*(2*pi/deltay);

[KX,KY] = meshgrid(kx,ky);

Note that the (positive) Nyquist wavenumber occurs for M=2+1 and N=2+1 whenever M
or N are even. If you are building a Fourier transform of a real function, you must ensure
that the Fourier transform for the indices m = M=2 + 1 and n = N=2 + 1 are REAL. In
practice, it is safest simply to set these values to 0. The Nyquist wavenumbers are not on
the KX,KY-grid when M and N are odd. The Fourier transform for (�kx;�ky) should also
always be the complex conjugate of the transform for (kx; ky).

With these arrays, it is quite simple to code a lowpass �lter, say

T (k) =

�
1; jkj < k0;
0; 0:

: (21)

4

Taking full advantage of the powerful MATLAB syntax,

T = (KX: � KX+ KY: � KY < k0^2) (22)

The �ltering may then be written as

Afilt = ifft2(T: � fft2(A)) (23)

Finally, if we look at the wavenumber locations in KX and KY, the picture is a bit confusing.
For plots of the Fourier transform it is best to have k = 0 in the center. This may be
arranged by the routines fftshift and ifftshift (see the MATLAB documentation).

5

