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Chapter 1

INTRODUCTION

In this introductory chapter, we shall start by reviewing the various modes of structural failure
and highlight the importance of fracture induced failure and contrast it with the limited coverage
given to fracture mechanics in Engineering Education. In the next section we will discuss some
examples of well known failures/accidents attributed to cracking. Then, using a simple example
we shall compare the failure load predicted from linear elastic fracture mechanics with the one
predicted by “classical” strength of materials. The next section will provide a brief panoramic
overview of the major developments in fracture mechanics. Finally, the chapter will conclude
with an outline of the lecture notes.

1.1 Modes of Failures

The fundamental requirement of any structure is that it should be designed to resist mechanical
failure through any (or a combination of) the following modes:

1. Elastic instability (buckling)

2. Large elastic deformation (jamming)
3. Gross plastic deformation (yielding)
4. Tensile instability (necking)

5. Fracture

Most of these failure modes are relatively well understood, and proper design procedures
have been developed to resist them. However, fractures occurring after earthquakes constitute
the major source of structural damage (Duga, Fisher, Buxbam, Rosenfield, Buhr, Honton and
McMillan 1983), and are the least well understood.

In fact, fracture often has been overlooked as a potential mode of failure at the expense of
an overemphasis on strength. Such a simplification is not new, and finds a very similar analogy
in the critical load of a column. If column strength is based entirely on a strength criterion, an
unsafe design may result as instability (or buckling) is overlooked for slender members. Thus
failure curves for columns show a smooth transition in the failure mode from columns based on
gross section yielding to columns based on instability.

By analogy, a cracked structure can be designed on the sole basis of strength as long as the
crack size does not exceed a critical value. Should the crack size exceed this critical value, then



Chapter 2

PRELIMINARY
CONSIDERATIONS

Needs some minor editing!

1 Whereas, ideally, an introductory course in Continuum Mechanics should be taken prior to a
fracture mechanics, this is seldom the case. Most often, students have had a graduate course in
Advanced Strength of Materials, which can only provide limited background to a solid fracture
mechanics course.

2 Accordingly, this preliminary chapter (mostly extracted from the author’s lecture notes in
Continuum Mechanics) will partially remedy for occasional deficiencies and will be often refer-
enced.

3 It should be noted that most, but not all, of the material in this chapter will be subsequently
referenced.

2.1 Tensors

1+ We now seek to generalize the concept of a vector by introducing the tensor (T), which
essentially exists to operate on vectors v to produce other vectors (or on tensors to produce
other tensors!). We designate this operation by T-v or simply Tv.

5 We hereby adopt the dyadic notation for tensors as linear vector operators

u = T or w=Tjv; (2.1-a)
u = v-S where S=T7 (2.1-b)

s Whereas a tensor is essentially an operator on vectors (or other tensors), it is also a physical
quantity, independent of any particular coordinate system yet specified most conveniently by
referring to an appropriate system of coordinates.

7 Tensors frequently arise as physical entities whose components are the coefficients of a linear
relationship between vectors.



2.1 Tensors 3

e A fourth order tensor (such as Elastic constants) will have four free indices.

4. Derivatives of tensor with respect to x; is written as , 7. For example:

_ oT;,;

0P ovi _ ,. . Ovy _ , . —_ 7. .
oz; — L 3—‘%1 = Vij % = V5 j ozn T‘z,],k (26)

14 Usefulness of the indicial notation is in presenting systems of equations in compact form.
For instance:
T5 = CijZ4 (27)

this simple compacted equation, when expanded would yield:

Tr1 = (1121 +cC1222 + C1323
Ty = C2121 + C2222 + 2323 (2.8-a)
T3 = 3121 + 3222 + C3323
Similarly:
Aij = Bipququ (2-9)
A = B11CiuiDit + B11Ci2D12 + B12C11 D21 + B12C12Da2
A2 = B11CuD1 + B11Ci12D12 + B12C11 D21 + B12C12D2o
As1 = B91C11 D11 + B21Ci2D12 + B C11 D21 + B2aCliaDao
Asy = B91C21 D11 + B21Co2 D12 + BaaCo1 Doy + BoaCor Do (2.10-a)

15 Using indicial notation, we may rewrite the definition of the dot product

ab = a;b; (2.11)

and of the cross product

axb = gpgraqbrep (2.12)

we note that in the second equation, there is one free index p thus there are three equations,
there are two repeated (dummy) indices ¢ and r, thus each equation has nine terms.

2.1.2 Tensor Operations

16 The sum of two (second order) tensors is simply defined as:

Si; = Ti; + Uy (2.13)

Victor Saouma Fracture Mechanics



2.1 Tensors

2.1.3 Rotation of Axes

23 The rule for changing second order tensor components under rotation of axes goes as follow:

U; = Qa

J

)

uj From Eq. 77

= a{quvq From Eq. 2.1-a (2.20)
= a]Tjadv, From Eq. 77

But we also have u; = Tipﬁp (again from Eq. 2.1-a) in the barred system, equating these two

expressions we obtain

hence

Tip — (a]afTy)T, = 0 (2.21)

Ty = alalTj, in Matrix Form [T] = [A)T[T)[A]
Ty, = al agTip in Matrix Form [T = [A][T][A]"

(2.22)

By extension, higher order tensors can be similarly transformed from one coordinate system to

another.

24 If we consider the 2D case, From Eq. 77

[ cosa  sina 0
A = —sina cosa 0
0 0 1
Tz Tpy O
T = Tey Ty, O
0 0O O

!
I

. T;m’ Tﬂcy
ATTA=| T, T,
0

cos? aTy, + sin® oTyy + sin 2017,

0
0
0

(2.23-a)

(2.23-b)

(2.23-c)

%(— sin 2aTy, + sin 2aTy, + 2 cos 201,

= | i(—sin2aTy, +sin2aTy, + 2cos2aTy, sin® al,, + cosa(cosaly, — 2sinaly, 0

alternatively, using sin 2a = 2sin acos & and cos 2a = cos

be rewritten as

0

0 0
(2.23-d)

2 o — sin® o, this last equation can

e e e
S
I

8
<

cos? 6 sin® 6 2sin 6 cos 6 Ty
sin? ¢ cos? 0 —2sin 6 cos 6 Tyy (2.24)
—sinfcosf cosfsin® cos?6 — sin? 6 Ty

2.1.4 Trace

25 The trace of a second-order tensor, denoted tr T is a scalar invariant function of the tensor

and is defined as

tr T=T; (2.25)

Thus it is equal to the sum of the diagonal elements in a matrix.

Victor Saouma
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2.2 Kinetics 7

2.2 Kinetics

2.2.1 Force, Traction and Stress Vectors

32 There are two kinds of forces in continuum mechanics

body forces: act on the elements of volume or mass inside the body, e.g. gravity, electromag-
netic fields. dF = pbdVol.

surface forces: are contact forces acting on the free body at its bounding surface. Those will
be defined in terms of force per unit area.

33 The surface force per unit area acting on an element dS is called traction or more accurately

stress vector.
/ tdS:i/ t.dS +j/ tde+k/ £.dsS (2.34)
S S S S

Most authors limit the term traction to an actual bounding surface of a body, and use the
term stress vector for an imaginary interior surface (even though the state of stress is a tensor
and not a vector).

32 The traction vectors on planes perpendicular to the coordinate axes are particularly useful.
When the vectors acting at a point on three such mutually perpendicular planes is given, the
stress vector at that point on any other arbitrarily inclined plane can be expressed in terms
of the first set of tractions.

35 A stress, Fig 2.1 is a second order cartesian tensor, o;; where the 1st subscript (i) refers to

X3
<533
32
G
31
3, AX
Ve 3
c o S,
13 A 2 S = X2
.
/ 12 X
oy 1
AX

Figure 2.1: Stress Components on an Infinitesimal Element

the direction of outward facing normal, and the second one (j) to the direction of component
force.

011 012 013 ty
g = Uij = 0921 0922 0923 = t2 (235)
031 032 033 ts
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Chapter 3

ELASTICITY BASED SOLUTIONS
FOR CRACK PROBLEMS

3.1 Introduction

1 This chapter will present mathematically rigorous derivations of some simple elasticity prob-
lems. All the theoretical basis required to follow those derivations have been covered in the
previous chapter. A summary of problems to be investigated is shown in Table 3.1.

3.2 Circular Hole, (Kirsch, 1898)

2 Analysing the infinite plate under uniform tension with a circular hole of diameter a, and
subjected to a uniform stress og, Fig. 3.1.

3 The peculiarity of this problem is that the far-field boundary conditions are better expressed
in cartesian coordinates, whereas the ones around the hole should be written in polar coordinate
system.

1 We will solve this problem by replacing the plate with a thick tube subjected to two different
set of loads. The first one is a thick cylinder subjected to uniform radial pressure (solution of
which is well known from Strength of Materials), the second one is a thick cylinder subjected
to both radial and shear stresses which must be compatible with the traction applied on the
rectangular plate.

Problem Coordinate System | Real/Complex | Solution Date
Circular Hole Polar Real Kirsh 1898
Elliptical Hole Curvilinear Complex Inglis 1913
Crack Cartesian Complex Westergaard | 1939
V Notch Polar Complex Willimas 1952
Dissimilar Materials Polar Complex Williams 1959
Anisotropic Materials | Cartesian Complex Sih 1965

Table 3.1: Summary of Elasticity Based Problems Analysed



3.2 Circular Hole, (Kirsch, 1898) 3

1. Outer boundaries: around an infinitely large circle of radius b inside a plate subjected to
uniform stress og, the stresses in polar coordinates are obtained from Strength of Materials

Orr Opg | | cosf —sinf og O cosf) —sinf r (3.7)
o9 ogo | | sin@® cos6 0 0 sind cosf '

yielding (recalling that sin?# = 1/2sin 26, and cos? 6 = 1/2(1 + cos 26)).

1
(Orr)reb = 0pcos®0 = 500(1 + cos 20) (3.8-a)
1
(ang)r:b = 500 sin 26 (38—b)
(0o0)rep = %(1 — cos26) (3.8-c)

For reasons which will become apparent later, it is more convenient to decompose the
state of stress given by Eq. 3.8-a and 3.8-b, into state I and II:

(O )icy = %ao (3.9-a)
(0r0)j—p = O (3.9-b)
(a,n,n)fib = %agcos% - (3.9-¢)
(ove)lL, = %agsin% -~ (3.9-d)

Where state I corresponds to a thick cylinder with external pressure applied on r = b
and of magnitude oy/2. Hence, only the last two equations will provide us with boundary
conditions.

2. Around the hole: the stresses should be equal to zero:

(Orr)r=a = 0 = (3.10-a)
(0r9)r=a = 0 =< (3.10-b)

12 Upon substitution in Eq. 3.6 the four boundary conditions (Eq. 3.9-c, 3.9-d, 3.10-a, and
3.10-b) become

(244304 92) _ L, a1
<2A + 6Bb* — i—f - 26—?) = %ao (3.11-b)

~(24+55+3) = 0 (3.11-c)
<2A + 6Ba® — i—f - 261_123) = 0 (3.11-d)

Victor Saouma Fracture Mechanics



3.5 V Notch, (Williams, 1952) 17
66 Thus we can define
0 — An _ _cos(Ap — Da _ _w.sin()\n —1a (3.77-a)
B, cos(A, + 1) sin(\, + 1«
b, = On_ sin(A, —1)a  wcos(\, — 1) (3.77-b)
D, sin(A, + 1)« cos(Ap + 1o
these ratios are equal to 1/3 and —1 respectively for « = 7 and A = 1/2. and
.3 1 1 3 1
F9) = Z [an (sm 50 + sin 59) + by, (§ cos 56 + cos 50)] (3.78)
o7 The stresses are obtained by substituting
(b, (5 6 1 360 an 5 3 . 36
Opp = Z Wz (Z co8 5 — ; €08 7) + NG (_Z sin 5 + 7 sin 7)} (3.79-a)
(b, (3 6 1 360 an 3. 30
ogg = Z WG (Z co8 5 + i 7) + 7 (_Z sin 5 — 7 sin ?ﬂ (3.79-b)
(b, (1 . 6 1 . 30 an (1 0 3 30
Org = Z % (Z sin 5 + 7 Sin 7) + 7 (Z cos 5 + 7 C0s 7)} (3.79-c)
6s These equations can be further simplified into
[ bp, 0 . 90 an 5.6 3 . 30
Opp = Z W cos o (1 + sin 5) + NG <_Z sin 5 + 7 sin 7)} (3.80-a)
[ bn 0 ) 0 Qp, 3 . 0 3 360
ogg = Z W cos o (1 — sin 5) + NG <_Z sin 5 — 7 sin 7)} (3.80-b)
(b . 0 560 a, (1 6 3 30
org = Z WG sin o cos” 5 + NG (Z cos 5 + T 7)] (3.80-c)
6o Finally, it can be shown that the displacements will be given by
1
u = o Z Re {anr’\” [(k 4+ Ap cos2a + cos 2M\, ) cos A — Ay, cos(Ay, — 2)0]
—bp 7" [(K + &, cos 200 — €08 26,a) sin €,0 — &, sin (&, — 2)0]} (3.81-a)
1
Vo= o Z Re {anr’\” [(k — Ap cos2a — cos 2A\, ) sin A0 + Ay, sin( A, — 2)0]
+b, " (K — & €08 200 + €08 26,00) €08 En 0 + &y cOS(E — 2)0]} (3.81-b)

70 This solution can be compared with Westergaard’s solution by comparing Equations 3.55-a
and 3.56-a with Eq. 3.80-a; Eq. 3.55-b and 3.56-b with Eq. 3.80-b; and Eq. 3.55-c and 3.56-c

with Eq. 3.80-c for n = 1. From this we observe that

K
by = LL
]QZTr
a = I
V2

(3.82)

Victor Saouma
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3.6 Crack at an Interface between Two Dissimilar Materials (Williams, 1959) 19

or Fi(n) = Fj(—7) =0
e Continuity of ogg at the interface, § =0

A1+ By = Ay + By (387)

e Continuity of 0,9 at § = 0 along the interface

A=1DC + A+ 1)D; = —(A— 1)Cy — (A + 1) Dy (3.88)

e Continuity of displacements (u,,ug) at the interface. Using the polar expression of the

displacements
T 21 M=+ 1)F;(0) + 4(1 — o) [Ci sin(A — 1)0 + A; cos(\ — 1)0])(3.89-a)
Hi
w = 21 P —F/(0) — A(1 — ap)[Cicos(A — 1) — Aisin(A— 18]} (3.80-b)
K
where p is the shear modulus, and «; = ﬁ
we obtain
1 1
5 [—A+1)F1(0) +44:(1 — )] = % [—(A+ 1) F(0) + 442(1 — a2)(3.90-a)
1 2
1 1
— [-F{(0) —4C1(1 —q)] = — [-F3(0) —4C5(1 — a9)] (3.90-b)
2111 212

3.6.3 Homogeneous Equations

74 Applying those boundary conditions, will lead to 8 homogeneous linear equations (Eq. 3.85-a,
3.85-b, 3.86-b, 3.86-c, 3.87, 3.88, 3.90-a, 3.90-b) in terms of the 8 unknowns A, By, C1, D1, A2, By, Cs
and Ds.

75 A nontrivial solution exists if the determinant of the 8 equations is equal to zero. This
determinant® is equal to

2k(1—ap) —2(1—ay) — (k—1)]% _

t2 )\ = 91
cotm A+ 2k(1 — az) + 2(1 — ay) 0 (3:91)

where k = &L,
B2

76 For the homogeneous case oy = ap and k = 1, the previous equation reduces to cot? A\ = 0
or sin? \m = 0 thus we recover the same solution as the one of Eq. 3.73-b for a crack in one

material:
n

=5 n=123.. (3.92)

Note that we exclude negative values of n to ensure finite displacements as the origin is ap-
proached, and the lowest eigenvalue controls.

>The original paper states: ... After some algebraic simplification...

Victor Saouma Fracture Mechanics



3.6 Crack at an Interface between Two Dissimilar Materials (Williams, 1959) 21

so Thus, Eq. 3.91 finally leads to

Re(cot Ar) = 0 (3.100-a)
Im(cot Aw) = =+0 (3.100-b)

we thus have two equations with two unknowns.
3.6.4 Solve for A\

s1 Let us solve those two equations. T'wo sets of solutions are possible:

1. If from 3.99-b tan A\,m = 0 then
A=n=0,1,2,3,... (3.101)

and accordingly from Eq. 3.100-b

1
A\j=+—coth™'3 (3.102)
T

2. Alternatively, from Eq. 3.100-a cot A,m = 0 = tan \,m = oo and’:

o + 1
A = ”; n=0,1,23,.. (3.103-a)
1
\j = +—tanh™'p3 (3.103-b)
™
1 B+1
- g |2 3.103-
3 log | 5 (3.108-c)

We note that for this case, \; — 0 as &1 — ag and k — 1 in 3.
3.6.5 Near Crack Tip Stresses

s2 Now that we have solved for A, we need to derive expressions for the near crack tip stress
field. We rewrite Eq. 3.83 as
.y
O(r)=r"""F(0,)) (3.104)
G(r)
we note that we no longer have two sets of functions, as the effect of dissimilar materials has
been accounted for and is embedded in A.
s3 The stresses will be given by Eq. 77

190 109

- - — 2 " —1 v !
o = e tig, =1 GOENO)+rT G (r)F(©) (3.105-a)
- T G"(r)F(9) (3.105-b)
0o = oz r 105-
109 190°% , L )
00 = 355 " rorag ! CUE(O) —rT G () E(0) (3.105-c)

6 1, _ 1 1tz
Recall that tanh™" z = 5 log 5

Victor Saouma Fracture Mechanics



3.6 Crack at an Interface between Two Dissimilar Materials (Williams, 1959) 23

thus,
Re {sin[(A, £ 1) +i);] 0} sin(A, £ 1) cos(8) cosh \;0 (3.114-a)
Re{cos[(Ar £1)+iX;]0} = cos(\, £ 1)cos(f)cosh \;0 (3.114-b)
s7 Substituting those relations in Eq. 3.112
Re[F ()] = coshA;0 (3.115-a)
————
£(0)
[Acos(Ar — 1)0 4+ Bcos(Ar + 1)0 + Csin(\, — 1)0 + Dsin(A, + 13115-b)
9(6)
Re[®(r,0)] = 1 cos();log(r)) cosh \;60
[Acos(Ar —1)8 + Bcos(A, +1)6
+C'sin(A, — 1)0 + D sin(A, + 1)0] (3.115-¢c)
ss For A\, = %
0 30 0 30
g(0) :Acos§+Bcosi—Csin§—l—Dsin? (3.116)

so Applying the boundary conditions at § = +m, og9p = 0, Eq. 3.105-b F(0) = 0, that is
g1(—7) = ga(m) or
C=-D=-a (3.117)
9o Similarly at = £, 0,9 = 0. Thus, from Eq. 3.105-¢ F'(6) =0, or gj(—7) = g4(m) or
A=3B=b (3.118)

91 From those two equations we rewrite Eq. 3.116

0 0 0 0
g9(0) =a (Sin 3 + sin 3?) +5b (3 co8 5 + cos %) (3.119)

92 We now determine the derivatives

f'(0) = Xjsinh ;0 (3.120-a)
10) = afZeos? 4L Q) <_§~3_9_§-Q>
g = a (2 c08 + 5 CO8 5 +5b 5 Sil 5 — 5 sin g (3.120-b)

o3 Thus, we now can determine

F'(0) = f(0)g(0)+ f(0)g'(0) (3.121-a)

0 1 0 0 0
= a {cosh i [; CoS 37 + 5 cos 5} + Ajsinh ;0 {sin 3? + sin 5} }
3.3 3.0 . 30 0
+b {cosh A0 [—5 sin - — 5 sin 5} + Ajsinh A;0 {cos > + 3 cos 5} %3.121—b)

Victor Saouma Fracture Mechanics



3.8 Assignment

25

os where s1 and sy are roots, in general complex, of Eq. 2.127 where s; = a;; +i3; for j = 1,2,
and the roots of interests are taken such that 3; > 0, and

2
Dj = a118; + a2 — aies;

a2
qj = ai2s; + Pt

J

(3.125)

(3.126)

99 After appropriate substitution, it can be shown that the cartesian stresses at the tip of the
crack for symmetric loading are

K - -
4 L Re | 2172 < 52 - ik . ) (3.127-a)
2 |51 752 \ (cosf + sosinf)2 (cosf + sysinf)2 /|
K ! ]
o, = ———Re < il - 52 i ) (3.127-b)
2w 51752 \(cos + sasinf)2 (cosf + sysinf)2 /|
K [ 1 ]
Oy = ———Re |12 ( - i ' ) (3.127-c)
2rr 51752 \ (cosf + sysinf)2 (cosf + sysinf)2 /) |
100 and, for plane skew-symmetric loading;:
K 1 2 2 ]
0r = ——LRe ( 52 _— it ' ) (3.128-a)
2rr 51752 \ (cosf + sosinf)2 (cos@ + sysinf)2 /|
K ! 1 1 ]
oy, = ———Re < __ . ) (3.128-b)
2w 51752 \(cos + sasinf)2  (cosf + sysinf)2 /|
K ! ]
0wy = ——Re ( ik - 52 i ) (3.128-¢)
2rr 51752 \ (cosf + s1sinf)2 (cosf + sysinf)2 /) |

101 For in-plane loadings, these stresses can be summed to give the stresses at a distance r and
an angle 6 from the crack tip.

102 An important observation to be made is that the form of the stress singularity r—1/2 is

identical to the one found in isotropic solids.

103 It should be noted that contrarily to the isotropic case where both the stress magnitude and
its spatial distribution are controlled by the stress intensity factor only, in the anisotropic case
they will also depend on the material elastic properties and the orientation of the crack with
respect to the principal planes of elastic symmetry (through s; and s2).

3.8 Assignment

CVEN-6831
FRACTURE MECHANICS
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3.8 Assignment 27

3. The stress intensity factor of the following problem:

X2
N
B ' A —
.
a | a
is given by:
P Ja+z
K = 3.130
A vra\ a—x ( )
P —
Ky = — (3.131)

vra\ a+x

Based on those expressions, and results from the previous problem, determine the stress
function ®.

4. Barenblatt’s model assumes a linearly varying closing pressure at the tip of a crack,

Using Mathematica and the expressions of K4 and Kp from the previous problem, de-
termine an expression for the stress intensity factors for this case.

5. Using Mathematica, program either:

(a) Westergaard’s solution for a crack subjected to mode I and mode II loading.

(b) Williams solution for a crack along dissimilar materials.

Victor Saouma Fracture Mechanics



Chapter 4

LEFM DESIGN EXAMPLES

1 Following the detailed coverage of the derivation of the linear elastic stress field around a crack
tip, and the introduction of the concept of a stress intensity factor in the preceding chapter, we
now seek to apply those equations to some (pure mode I) practical design problems.

> First we shall examine how is linear elastic fracture mechanics (LEFM) effectively used in
design examples, then we shall give analytical solutions to some simple commonly used test
geometries, followed by a tabulation of fracture toughness of commonly used engineering ma-
terials. Finally, this chapter will conclude with some simple design/analysis examples.

4.1 Design Philosophy Based on Linear Elastic Fracture Me-
chanics

3 One of the underlying principles of fracture mechanics is that unstable fracture occurs when
the stress intensity factor (SIF) reaches a critical value Kic, also called fracture toughness. Kic
represents the inherent ability of a material to withstand a given stress field intensity at the tip
of a crack and to resist progressive tensile crack extension.

4 Thus a crack will propagate (under pure mode I), whenever the stress intensity factor K
(which characterizes the strength of the singularity for a given problem) reaches a material
constant K7.. Hence, under the assumptions of linear elastic fracture mechanics (LEFM), at
the point of incipient crack growth:

K. = ﬁO‘\/ﬁ (41)

5 Thus for the design of a cracked, or potentially cracked, structure, the engineer would have
to decide what design variables can be selected, as only, two of these variables can be fixed,
and the third must be determined. The design variables are:

Material properties: (such as special steel to resist corrosive liquid) = K. is fixed.
Design stress level: (which may be governed by weight considerations) = o is fixed.

Flaw size: !, a.

In most cases, a refers to half the total crack length.



4.2 Stress Intensity Factors 3

L

Figure 4.3: Double Edge Notch Tension Panel

Single Edge Notch Tension Panel (SENT) for = =2, Fig. 4.2

K = l1.12 ~0.23 (%) 11056 (%)2 —921.74 (%)3 +30.42 (%ﬂ ovra  (4.4)

B

We observe that here the (3 factor for small crack (yj; < 1) is grater than one and is
approximately 1.12.

Double Edge Notch Tension Panel (DENT), Fig. 4.3

2 3
K= |1.12 +0.43 (%) — 479 (%) +15.46 (%) ] ov/ma (4.5)
5
Three Point Bend (TPB), Fig. 4.4
3/ 199~ (%) (1 - %) (215 - 3.93% + 27 (%)%)] ps
K; 5 3 (4.6)
2(1+245) (1—3)° BW?

Compact Tension Specimen (CTS), Fig. 4.5 used in ASTM E-399 (399 n.d.) Standard
Test Method for Plane-Strain Fracture Toughness of Metallic Materials

Kr= 167—1046(i>+370<i)2—574(i>3+361 (1)4 L @
A CA\w W W w) | Bw V" '

[

B

We note that this is not exactly the equation found in the ASTM standard, but rather
an equivalent one written in the standard form.
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Chapter 5

THEORETICAL STRENGTH of
SOLIDS; (Griffith I)

1 We recall that Griffith’s involvement with fracture mechanics started as he was exploring the
disparity in strength between glass rods of different sizes, (Griffith 1921). As such, he had
postulated that this can be explained by the presence of internal flaws (idealized as elliptical)
and then used Inglis solution to explain this discrepancy.

2 In this section, we shall develop an expression for the theoretical strength of perfect crystals
(theoretically the strongest form of solid). This derivation, (Kelly 1974) is fundamentally
different than the one of Griffith as it starts at the atomic level.

5.1 Derivation

3 We start by exploring the energy of interaction between two adjacent atoms at equilibrium
separated by a distance ag, Fig. 5.1. The total energy which must be supplied to separate atom
C from C’ is

Uy =2y (5.1)

where v is the surface energy', and the factor of 2 is due to the fact that upon separation, we
have two distinct surfaces.

5.1.1 Tensile Strength

5.1.1.1 Ideal Strength in Terms of Physical Parameters

We shall first derive an expression for the ideal strength in terms of physical parameters, and
in the next section the strength will be expressed in terms of engineering ones.

! From watching raindrops and bubbles it is obvious that liquid water has surface tension. When the surface
of a liquid is extended (soap bubble, insect walking on liquid) work is done against this tension, and energy is
stored in the new surface. When insects walk on water it sinks until the surface energy just balances the decrease
in its potential energy. For solids, the chemical bonds are stronger than for liquids, hence the surface energy is
stronger. The reason why we do not notice it is that solids are too rigid to be distorted by it. Surface energy ~y
is expressed in J/m? and the surface energies of water, most solids, and diamonds are approximately .077, 1.0,
and 5.14 respectively.



Chapter 6

ENERGY TRANSFER in CRACK
GROWTH,; (Griffith II)

1 In the preceding chapters, we have focused on the singular stress field around a crack tip. On
this basis, a criteria for crack propagation, based on the strength of the singularity was first
developed and then used in practical problems.

> An alternative to this approach, is one based on energy transfer (or release), which occurs
during crack propagation. This dual approach will be developed in this chapter.

s Griffith’s main achievement, in providing a basis for the fracture strengths of bodies containing
cracks, was his realization that it was possible to derive a thermodynamic criterion for fracture
by considering the total change in energy of a cracked body as the crack length increases,
(Griffith 1921).

4 Hence, Griffith showed that material fail not because of a maximum stress, but rather because
a certain energy criteria was met.

5 Thus, the Griffith model for elastic solids, and the subsequent one by Irwin and Orowan for
elastic-plastic solids, show that crack propagation is caused by a transfer of energy transfer
from external work and/or strain energy to surface energy.

¢ It should be noted that this is a global energy approach, which was developed prior to the
one of Westergaard which focused on the stress field surrounding a crack tip. It will be shown
later that for linear elastic solids the two approaches are identical.

6.1 Thermodynamics of Crack Growth

6.1.1 General Derivation

7 If we consider a crack in a deformable continuum subjected to arbitrary loading, then the
first law of thermodynamics gives: The change in energy is proportional to the amount of work
performed. Since only the change of energy is involved, any datum can be used as a basis for
measure of energy. Hence energy is neither created nor consumed.

s The first law of thermodynamics states The time-rate of change of the total energy (i.e., sum
of the kinetic energy and the internal energy) is equal to the sum of the rate of work done by
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Figure 6.1: Energy Transfer in a Cracked Plate

length 2a located in an infinite plate subjected to load P. Griffith assumed that it was possible
to produce a macroscopical load displacement (P — u) curve for two different crack lengths a
and a + da.

Two different boundary conditions will be considered, and in each one the change in potential
energy as the crack extends from a to a 4+ da will be determined:

Fixed Grip: (u2 = u;) loading, an increase in crack length from a to a + da results in a
decrease in stored elastic strain energy, AU,

1 1
AU == 5 2U1 — §P1U]_ (66)
1
= 5 (PQ — P1) w1 (67)
< 0 (6.8)

Furthermore, under fixed grip there is no external work (us = wuq), so the decrease in
potential energy is the same as the decrease in stored internal strain energy, hence

-1, = AW — AU (6.9)

(P — Prur = 5 (P1 — P2)u (6.10)

1 1

2 2

Fixed Load: P, = P; the situation is slightly more complicated. Here there is both external
work

AW = Pl(’LLQ — U1> (6.11)

and a release of internal strain energy. Thus the net effect is a change in potential energy
given by:

y,—1I; = AW —AU (6.12)
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Chapter 7

MIXED MODE CRACK
PROPAGATION

1 Practical engineering cracked structures are subjected to mixed mode loading, thus in general
K7 and Kjj are both nonzero, yet we usually measure only mode I fracture toughness K. (K.
concept is seldom used). Thus, so far the only fracture propagation criterion we have is for
mode I only (K; vs Ky, and G vs R).

2 Whereas under pure mode I in homogeneous isotropic material, crack propagation is collinear,
in all other cases the propagation will be curvilinear and at an angle 6y with respect to the
crack axis. Thus, for the general mixed mode case, we seek to formulate a criterion that will
determine:

1. The angle of incipient propagation, 6y, with respect to the crack axis.
2. If the stress intensity factors are in such a critical combination as to render the crack

locally unstable and force it to propagate.

3 Once again, for pure mode I problems, fracture initiation occurs if:

K1 > K (7.1)

4 The determination of a fracture initiation criterion for an existing crack in mode I and II
would require a relationship between Ki, K1, and Kj. of the form

F (K1, K1, Kio) = 0 (7.2)

and would be analogous to the one between the two principal stresses and a yield stress, Fig.
7.1
Fya(or,09,04) =0 (7.3)

Such an equation may be the familiar von Mises criterion.

5 In the absence of a widely accepted criterion for mixed mode crack growth, three of the most
widely used criterion are discussed below.



7.1 Analytical Models for Isotropic Solids 3

Solution of the second equation yields the angle of crack extension 6

0 1K; 1 K1\?
tan — = ——— + = —_— 8 7.8
Y 4Ky 4 <K11> * (78)

10 For the crack to extend, the maximum circumferential tensile stress, og (from Eq. 3.55-b
and 3.56-b)

o = K cos @ (1 — sin? 9—0) + K <—§ sin 9—0 - §sin %) (7.9)
V2rr 2 2 \27r 4 2 4 2

must reach a critical value which is obtained by rearranging the previous equation

6 0 3
O9mazxV 2mr = KIC = COS EO {Kl 0082 30 — §KH sin 90} (7.10)

which can be normalized as

K 0 3K 6
KIIC cos? 20 5 K:: cos 50 sinfy =1 (7.11)

11 This equation can be used to define an equivalent stress intensity factor K., for mixed mode
problems

0 3 0
Keqg = K cos® 50 — §KH cos 30 sin 6y (7.12)

7.1.2 Maximum Energy Release Rate

12 In their original model, Erdogan, F. and Sih, G.C. (1963) noted that:

“If we accept Griffith (energy) theory as the valid criteria which explains crack
growth, then the crack will grow in the direction along which the elastic energy
release per unit crack extension will be maximum and the crack will start to grow
when this energy reaches a critical value (or G = G(9, 0)). Evaluation of G(d, 0)
poses insurmountable mathematical difficulties.”

13 Finding G(4, 0) will establish for the general mixed mode case the duality which is the basis
of fracture mechanics: the equivalence in viewing fracture initiation from either a global energy
balance or a local stress intensity point of view.

12 This (insurmountable) problem was solved in 1974, by Hussain et al. (1974). Fundamen-
tally, Hussain et al. (1974) have solved for the stress intensity factor of a major crack with an
infinitesimal “kink” at an angle 6, K;(0) and K;7(0) in terms of the stress intensity factors of
the original crack K; and Kjj, Fig. 7.2:

0
Ki(0) _ 4 1—% 2m KICOSG—I—%KHsiHH (7.13)
Kr(0) [ \3+4cos26 1+§ K[[COS@-%K]SH]H ’
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ELASTO PLASTIC FRACTURE
MECHANICS



Chapter 8

PLASTIC ZONE SIZES

1 it was shown in chapter 7?7 that, under linear elastic fracture mechanics assumptions, the
stress at the crack tip is theoretically infinite. Clearly, all materials have a finite strength, thus
there will always be a small plastified zone around the crack tip.

2 If this zone is small compared to the crack size, then our linear elastic assumptions are correct;
if not, LEFM is not applicable (thus it would be incorrect to use a K or G criterion) and a
nonlinear model must be used. This “damaged” zone is referred to as a plastic zone for metals,
and a fracture process zone for cementitious materials and ceramics.

3 Thus there are two important issues associated with nonlinear fracture:

1. What is the size of the plastic or process zone?

2. What are the criteria for crack growth?
4+ This chapter will answer the first question by focusing on metals', whereas the next chapter
will develop criterions for crack growth.

5 The evaluation of the plastic zone for plastified materials can be determined through various
levels of approximations:

1. Uniaxial stress criteria

(a) first order approximation
(b) second order approximation (Irwin)

(¢) Dugdale’s model

2. Multiaxial yield criteria

Each one of them will be separately reviewed.

8.1 Uniaxial Stress Criteria

¢ First we shall examine criteria in which only the uniaxial stress state (o,, normal to thee
crack axis) and we shall consider three models of increasing complexities.

!Due to the intrinsically different behavior of concrete compared to metals, estimates of the fracture process
zone will be separately discussed.



8.1 Uniaxial Stress Criteria

jcrack Lip has blunted

Figure 8.2: Second-Order Approximation of the Plastic Zone

T a _1 x
= . o\ 5" 2dr — oyar,
a 1 r*
— 5 p *
— 0‘\/%27”2 |0 _Uyldrp
— * *
= 0,/ 2a7“p Ty1aTp

o Equating A to B we obtain:

04/ 20/)"; - UyldT’; - O-yld(s
* — *
owa(0+1,) = oy/2ar;

2a0?
*\2 *
O +rp)" = o2 P
yld

2
10 From Eq. 8.3, ) = 5 <L> , thus this simplifies into

p Oyld

d+r, =2ry=6 =7

1 Ky o \?
TPZ—T: E— a

T 03 Oya

(8.5)

1 Note that r, = 27} and that we can still use r; but with acsf = a+r;; thus we can consider

an effective crack length of a + 7, which would result in:

K2
Kepr = fg)oy/m(a+rp) = f(g)a\/w(cw—m (8.10)
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8.1 Uniaxial Stress Criteria
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Figure 8.3: Dugdale’s Model

Figure 8.4: Point Load on a Crack

Victor Saouma

Fracture Mechanics



8.2 Multiaxial Yield Criteria 7

Figure 8.6: Barenblatt’s Model
8.2 Multiaxial Yield Criteria

22 All the previous models have restricted themselves to # = 0 and have used uniaxial yield
criteria, but the size of the plastic zone can be similarly derived from a multi-axial yield criterion.

25 The principal stresses at a point with respect to the crack tip are given by:

_ 2
012 = O'J:;‘Uy 4+ \/(Uac . Uy) +Tx2y (824)

where the stresses were obtained in Eq. 3.52-a, 3.52-b, and 3.52-c

K 0 [ ) 0]
= cos = |1+ sin - 8.25
oL vV 2mr 2 2 ( )
K1 0 0
= — |1 —sin— 2
o9 Nor cos 5 { sin 2] (8.26)
o3 = l/(Jl + 0'2) (8.27)
for plane strain, or
o3 =0 (8.28)

for plane stress.

26 With those stress expressions, any yield criteria could be used. Using the von Mises criteria,

we would obtain: . )
Oe = 7 {(01 —09)? + (09 — 03)* + (03 — 01)2} > (8.29)

and yielding would occur when o, reaches o,,4. Substituting the principal stresses (with r = r)

into this equation and solving for 7, yields

e For plane strain:

r(0) = 51 P §in? 0+ (1 — 20)2(1 + cos 0)} (8.30)

T 4r o2
dmog, |2
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8.3 Plane Strain vs. Plane Stress 9

Transition

Figure 8.8: Plastic Zone Size Across Plate Thickness

2
s1 We also observe that since r, is proportional to (%) , the plate thickness should increase
y

as either the SIF increase or the yield stress decrease.

32 Furthermore, the different stress fields present at the tip of the crack under plane stress and
plane strain will result in different deformation patterns. This is best explained in terms of the
orientation of the planes of maximum shear stress for both cases, Fig. 8.9.

Plane Stress: 0, = 0, and the maximum shear stress T,,q: iS equal to %’” and occurs at
approximately 45 degrees from the crack plane.

Plane Strain: In this case we have o, < 0, < 0, and the maximum shear stress is equal to

%—gay which is not only much smaller than %> but occurs on different planes.

33 Finally, it should be noted, once again, that fracture toughness K. can only be measured
under plane strain conditions, Fig. 8.10
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Chapter 9

FATIGUE CRACK
PROPAGATION

1 When a subcritical crack (a crack whose stress intensity factor is below the critical value) is
subjected to either repeated or fatigue load, or is subjected to a corrosive environment, crack
propagation will occur.

> As in many structures one has to assume the presence of minute flaws (as large as the smallest
one which can be detected). The application of repeated loading will cause crack growth. The
loading is usually caused by vibrations.

3 Thus an important question that arises is “how long would it be before this subcritical crack
grows to reach a critical size that would trigger failure?” To predict the minimum fatigue life
of metallic structures, and to establish safe inspection intervals, an understanding of the rate
of fatigue crack propagation is required.

Historically, fatigue life prediction was based on S — N curves, Fig. 9.1 (or Goodman’s

B

Endurance Limit

Figure 9.1: S-N Curve and Endurance Limit

Diagram) using a Strength of Material Approach which did NOT assume the presence of a
crack.

9.1 Experimental Observation

1 If we start with a plate that has no crack and subject it to a series of repeated loading, Fig.
9.2 between o, and oy, we would observe three distinct stages, Fig. 9.3

1. Stage 1 : Micro coalescence of voids and formation of microcracks. This stage is difficult
to capture and is most appropriately investigated by metallurgists or material scientists,



9.2 Fatigue Laws Under Constant Amplitude Loading 3

law based on experimental observations. Most other empirical fatigue laws can be considered
as direct extensions, or refinements of this one, given by

da
— =C(AK)" 9.1
= C@K) (9.1
which is a straight line on a log-log plot of éi—]‘\l] vs AK, and
AK = Kma:p - szn = (Umax - Umzn)f(g) vTa (92)
da

a is the crack length; N the number of load cycles; C' the intercept of line along N and is of

the order of 10~% and has units of length/cycle; and n is the slope of the line and ranges from
2 to 10.

10 Equation 9.1 can be rewritten as :

Aa
AN = GAR @ (9:3)
af da
N = /dN — / N Ol (9.4)

11 Thus it is apparent that a small error in the SIF calculations would be magnified greatly
as n ranges from 2 to 6. Because of the sensitivity of NV upon AK, it is essential to properly
determine the numerical values of the stress intensity factors.

12 However, in most practical cases, the crack shape, boundary conditions, and load are in such
a combination that an analytical solution for the SIF does not exist and large approximation
errors have to be accepted. Unfortunately, analytical expressions for K are available for only few
simple cases. Thus the stress analyst has to use handbook formulas for them (Tada et al. 1973).
A remedy to this problem is the usage of numerical methods, of which the finite element method
has achieved greatest success.

9.2.2 Foreman’s Model

13 When compared with experimental data, it is evident that Paris law does not account for:

1. Increase in crack growth rate as K,,q, approaches K.

2. Slow increase in crack growth at K, ~ K,
thus it was modified by Foreman (Foreman, Kearney and Engle 1967), Fig. 9.4
da C(AK)"
dN (1-R)K.—- AK

(9.5)

9.2.3 Modified Walker’s Model

12 Walker’s (Walker 1970) model is yet another variation of Paris Law which accounts for the
stress ratio R = —Ilg””'" = Zuin

max Omax

da C[ AK )r 06)

dN ~ T [ - R)@m
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9.3 Variable Amplitude Loading 5

aluminum which has R = 15 kJ/m? E = 70 GPa C = 5 x 107! m/cycle, and n = 3. The
smallest detectable flaw is 4 mm. How long would it be before the crack will propagate to its
critical length?

2
Assuming K = oy/ma and K. = v ER, then a. = # = _EB o

(70 x 10%)(15 x 103)
= = 0.0084m = 8.4 9.8
e (200 x 106)27 = eAmm (98)

af da af da
~ N B /ai W B ‘/ai C (Umax - Umin)n((ﬂ-a)%)n
~—

(Ao)m
8.4x1073 da 1064 .0084 154
_ — -L 9.9
/4><10*3 (5 x 10711) (200 — 50)? (7a)*d /.004 “ (0.9)
——
c (Ac)3  ((ra)?)3

—2128a7 9 [|0'= 2128[— o= + =]
= 10,428 cycles

. . L 1 flight 1 day 1 month .
thus the time ¢ will be: t = (10,428) cycles x g5 cycle X2 flight 30 day ~ 17.38 month
~ 1.5 years.

If a longer lifetime is desired, then we can:

1. Employ a different material with higher K., so as to increase the critical crack length a.
at instability.

2. Reduce the maximum value of the stress o,,4.
3. Reduce the stress range Ao.

4. Improve the inspection so as to reduce the assumed initial crack length a@p,-

9.2.6.2 Example 2

21 Repeat the previous problem except that more sophisticated (and expensive) NDT equipment
is available with a resolution of .1 mm thus a; = .lmm

— 1 1
t = 2128] Toos1 T m] = 184, 583 cycles

t = 1505 (189, 583) = 316 months ~ 26 years!

9.2.6.3 Example 3
Rolfe and Barsoum p.261-263.

9.3 Variable Amplitude Loading

9.3.1 No Load Interaction

22 Most Engineering structures are subjected to variable amplitude repeated loading, however,
most experimental data is based on constant amplitude load test. Thus, the following questions
arise:
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Chapter 10

CRACK TIP OPENING
DISPLACEMENTS

1 Within the assumptions and limitations of LEFM we have two valid (and equivalent) criteria
for crack propagation: 1) K vs Kj. which is a local criteria based on the strength of the stress
singularity at the tip of the crack; and 2) G vs Gy, (or R) which is a global criteria based on
the amount of energy released (or consumed) during a unit surface crack’s propagations.

2 In many cases it is found that LEFM based criteria is either: too conservative and expensive
as it does not account for plastification at the crack tip, and/or invalid based on calculations
of 7, where LEFM assumptions are checked.

3 Thus, in those cases where LEFM is not applicable, an alternative criteria for crack growth
in Elasto Plastic Fracture Mechanics (EPFM) is sought.

4 But first let us note the various stages of ductile fracture:

1. Blunting of an initially sharp crack. Under LEFM assumptions, the crack tip opening
displacement (CTOD) is zero, however in elasto-plastic material due to blunting it is
different from zero, Fig. 10.1.

Figure 10.1: Crack Tip Opening Displacement, (Anderson 1995)

2. Crack initiation
3. Slow (stable) crack growth

4. Unstable crack growth



10.1 Derivation of CTOD 3

2.0 0
V=g, {L} sin - [/{ +1— 2cos? 5] (10.1)

2T 2

1 If we substitute § = £ we obtain the upper and lower displacements of the crack face, and
due to symmetry their sum corresponds to the crack opening displacement. Hence the crack

opening is given by
1
cop =20 =""1p, [ (10.2)
I 2

*
p

12 If we determine the crack tip opening displacement a distance r} away from the crack tip

using Irwin’s plastic zone correction from Eq. 8.9

1 K?
* I
= —— 10.3
T or 024 (10-3)
and using k = i’jr—l’j for plane stress we obtain
4 K?
CTOD = ——1 (10.4)
T Eogg

10.1.2 Dugdale’s Solution

13 Using Dugdale’s solution, Kanninen (Kanninen 1984) has shown that the crack opening along
the crack is given by':

2 aoyq V2 —a2++ve2—x2| oz Ve —a? 4+ ave? — a2
v(z) = ——==<{log —log (10.5)
T kE V2 —a?2—ve2—z22| a zVe? —a? —ave? — a2
for 0 <z < ¢. For x = a this reduces to
4 ao,4 c
= ———log— 10.6
o(a) = 20% 15 € (10.6)

14 Combining this equation with Dugdale’s solution for ¢ from Eq. 8.21,

a T oo
- = — 10.7
. =08 3 -~ ( )
we would then obtain g
CTOD = 2p = - 2% log [sec ra } (10.8)
T 2044
15 using the series expansion of log sec:
8 ao,q 1(%0)2 1(71'0)4
CTOD = ——2= |- [ = — = 10.9
Vs E [2 2 Uyld + 12 2 Uyld + ( )
or
2 a2 o2
CTOD = 1+ ——+... 10.10
Eo,, + 24 Uy21d + ( )

note that for small ﬁ, the CTOD can be approximated by CTOD = K*
y

Egyld .

!Derivation of this equation can be found on p. 203 of (Anderson 1995)
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Chapter 11

J INTEGRAL

11.1 Genesis

1 Eshelby (Eshelby 1974) has defined a number of contour integrals that are path independent
by virtue of the theorem of energy conservation. The two-dimensional form of one of these
integrals can be written as:

ou
J = dy—t—dy ) =0 11.1
fr(w y—to y) (11.1)
with .
w :/ Jijdé‘ij (11.2)
0

where w is the strain energy density; I is a closed contour followed counter-clockwise, as shown
in Fig. 11.1; t is the traction vector on a plane defined by the outward drawn normal n and
t = on; u the displacement vector, and dy is the element of the arc along the path I'.

Figure 11.1: J Integral Definition Around a Crack

2 Whereas Eshelby had defined a number of similar path independent contour integrals, he had
not assigned them with a particular physical meaning.



11.3 Nonlinear Elastic Energy Release Rate 3

9 Thus the integrand of Eq. 11.3 vanishes and J = 0 for any closed contour.

10 Having shown that indeed J = 0, we will now exploit this to proove that around a crack, J
is non-zero and is independent of the path.

11 With reference to Fig. 11.2 if we consider the closed path I' = I'y + I's + I's + I'4 in which I'y
and I's are arbitrarily chosen contours. Obviously J = 0 over I in order to satisfy compatibility
conditions, provided that the stresses and displacement gradients are continuous. Along paths
I’y and Ty, the traction vector ¢; = 0 and also dy = 0. Consequently, the contributions to J
from I'y and I'y vanish. Taking into account the difference sense of integration along paths
I'y and I's we arrive at the conclusion that the values of J integrated over paths I'; and I's
are identical. Because these two paths were arbitrarily chosen, the path independence of J is
assured.

Figure 11.2: Closed Contour for Proof of J Path Independence

11.3 Nonlinear Elastic Energy Release Rate

12 Let us now establish the connection between the two previous interpretations of J, the one
mathematically defined by Eshelby, and the one associated with the energy release rate (yet
to be proven). We shall prove that when J is applied along a contour around a crack tip, it
represents the change in potential energy for a virtual crack extension da. Two slightly different
derivations are presented.

11.3.1 Virtual Crack Extension

13 Considering a two-dimensional crack surrounded by a line I' which encompasses an area €.
Under quasi-static conditions, and in the absence of body forces, the potential energy is given
by

II= / wdQ — 7{ tiuidy (11.12)
Q r
14 For a virtual crack extension, the change in potential energy is
— = —d) — ti— i— | d 11.13-
da o da _7{*[ da +uda] Y ( 3-2)
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FRACTURE MECHANICS OF
CONCRETE



Chapter 12

FRACTURE DETERIORATION
ANALYSIS OF CONCRETE

12.1 Introduction

1 It is ironic that although the foundation for fracture mechanics was laid by Griffith in the
early thirties for brittle materials (such as concrete) (Griffith 1921), it has been mostly applied
to metallic materials. Although there have been some pioneering efforts to apply fracture
mechanics to concrete (Kaplan 1961), it was not until the mid-seventies that a number of
researchers from the academic community focused their attention on various aspects of this
application.

2 In applying fracture mechanics to concrete, much was initially borrowed from the wealth of
information and research previously undertaken in conjunction with metals by metallurgists or
mechanical engineers. However, it quickly became evident that by its very heterogeneous nature
concrete has some unique fracture characteristics, which required the alteration of existing
models.

3 By now fracture mechanics is universally acknowledged as a viable tool of analysis for in-
vestigation of concrete cracking. And after many years of development on numerous (plastic-
ity based) constitutive models for concrete, tensile cracking remains its undisputed “Achille’s
heel”. For the most part, even the simplest constitutive models appear to perform reasonably
well under compressive regimes, however their capabilities are seriously challenged under tensile
stresses. This apparent inability to properly model tensile cracking is of minor importance in
reinforced concrete structures in which the steel “takes over” the tensile stresses.

4+ However for unreinforced structures, such as dams, the apparent inability of the constitutive
models to properly and efficiently model tensile cracking is a major handicap. As such for
unreinforced concrete structures prone to tensile cracking, a fracture mechanics based model
(rather than a plasticity based one) should be used.

5 Whereas an inappropriately large number of papers have been published on computational
models for concrete (some of which will be discussed in a separate chapter), relatively few
research has been undertaken to properly understand and characterize fracture models. Hence,
this chapter will exclusively focus on the phenomenological aspects of concrete fracture from a
material point of view.



12.2 Phenomenological Observations 3

(not necessarily corresponding to the loading direction). To accomplish this test a clip
gage or a strain gage has to provide the feedback signal to the testing equipment in order
to accordingly adjust the stroke.

10 Most concrete fracture tests are conducted under strain control with a gage located at the
mouth of the crack providing the specimen response.

11 Both stroke and strain controlled tests require a closed-loop experimental set up, which is
usually expensive and was not widely available until very recently.

12.2.2 Pre/Post-Peak Material Response of Steel and Concrete

12 As an introduction to concrete fracture, let us compare the pre- and post-peak response of
metals and concrete, as illustrated in Fig.12.2, both obtained in a strain-controlled test of an
uncracked or un-notched specimen.

Y c

1% 2% 25% °© 01% e

Steel Concrete

Figure 12.2: Stress-Strain Curves of Metals and Concrete

1. Pre-peak:

(a) Metal exhibits a linear elastic response up to the yield stress 0,4, and an approximate
strain of 0.1%. Subsequently, due to internal dislocation plastic deformation with
strain up to 25% may result to be followed by strain hardening.

(b) Concrete exhibits a linear response up to approximately 0.6 f/. Subsequently, internal
microcracking induces a nonlinear response up to a peak stress f/ and a corresponding
strain of approximately 0.01%.

Under load control only the pre-peak response can be measured.
2. Post-peak:

(a) Metals response in the post-peak zone is not yet well understood. Not only is it not
of practical usefulness, but also it is largely overshadowed by necking.

(b) Concrete response in the post-peak zone is most interesting, as it can exhibit addi-
tional strains. The descending branch of the concrete response in Fig. 12.2 is an
idealization of the average material response. A more accurate description should
account for the localization of the induced cracks. Thus away from the localized
crack there is an elastic unloading, and at the crack, since a strain cannot be prop-
erly defined, a stress-crack opening displacement is a more appropriate model. This
will be discussed in the subsequent section.
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12.3 Localisation of Deformation 5

12.3.1.1 ¢-COD Diagram, Hillerborg’s Model

19 From the previous discussion, it is clear that concrete softening is characterized by a stress-
crack opening width curve (and not stress-strain). The exact charachterization of the softening
response should ideally be obtained from a uniaxial test of an uncracked specimen. However,
it has been found (Li and Liang 1986, Hordijk, Reinhardt and Cornelissen 1989) that not
only are those tests extremely sensitive, but drastically different results can be obtained from
different geometries, sizes, and testing machines. Hence, the softening curve is often indirectly
determined by testing notched specimens.

20 In what is probably the most referenced work in the nonlinear fracture of concrete literature,
Hillerborg (Hillerborg, A. and Modéer, M. and Petersson, P.E. 1976) presented in 1976 a very
simple and elegant model which has been previously described qualitatively. In this model, the
crack is composed of two parts, Fig. 12.4:

Microcracks

|
Fracture Process Zone
|

(FP7) True Crack J

|
lﬂ\l
Effective Crack (agy)
Pl !
~ | |

A

Tili;kness .

1 Wy CoD

Figure 12.4: Hillerborg’s Fictitious Crack Model

1. True or physical crack across which no stresses can be transmitted. Along this zone we
have both displacement and stress discontinuities.

2. Fictitious crack, or Fracture Process Zone (FPZ) ahead of the previous one, characterized
by:
(a) peak stress at its tip equal to the tensile strength of concrete
(b) decreasing stress distribution from f/ at the tip of the fictitious crack to zero at the

tip of the physical crack

It should be noted that along the FPZ, we have displacement discontinuity and stress
continuity.
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13.1 Linear Elastic Fracture Models 3

13.1.2 Testing Procedure

10 Fracture toughness tests should be conducted under strain control where the strain is a
measure of the crack mouth opening displacement” in a servo-controlled manner, Fig. 13.1.

CNoD
o LoaD

Programmed

Comparitor
Signal

(CMOD Prog.) ‘ MTS ‘

load
cell clip
gage »
Signal v - A

Conditioner 0\1_/0 R];’{aslgllg}l'e

Data
Reduction

and
P Interpretation

cmod

Stroke - flcmod)

(Servovalve)

Data Acquisiti
%’7 Test >‘< Testing >\< ata aC;]gm ion >‘
rontrel | Machine | Reduction |

Figure 13.1: Servo-Controlled Test Setup for Concrete K. and G

11 During the test, a plot of the load versus crack mouth opening displacement should be
observed, Fig. 13.2.

12 The CMOD is first gradually increased. Following a linear part, a nonlinear prepeak response
is first observed. This is associated with slow crack growth and thus the formation of a FPZ
turning the notch into a crack. At around the peak load, the CMOD is decreased, thus effectively
reducing the load. The load is then reapplied and the response would then extend into the post-
peak regime. Throughout the descending branch of the structural softening, a series of unload
and reload is performed in order to determine the experimental compliance of the cracked
specimen for different crack lengths?.

13.1.3 Data Reduction

Effective Young’s modulus The effective crack length determination entails measurement
of the specimen compliance (inverse of the stiffness or displacement over load). The
compliance determination in turn requires the concrete Young’s modulus.

The elastic modulus can be determined from:

2 To conduct such tests under displacement control might result in undesirable snapbacks if the testing
equipment is not rigid enough.

3Unload reload are not required for the experimental determination of G as this would simply be the area
under the P-CMOD curve.

Victor Saouma Fracture Mechanics
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traction stress transfer  \,, continuum
free N

Figure 13.3: Effective Crack Length Definition

Compliance Derivative Method If the SIF were not derived from the finite element
analysis, than the Compliance Derivative Method can be used to determine them.
Recalling from Eq. 6.31 we have:

G=——"" (13.6)

where P, a,C, and B are the applied load, crack length, compliance, and specimen

2
width respectively. Combining Eq. 13.6 with G = % where E' = FE for plane stress
and E' = # for plane strain, we obtain:

_F P2 0oC

'~ 2B da

Recalling that the experimental compliance is related to the normalized one through
Cp = ECeyp, and assuming plane stress condition, Eq. 13.7 can be rearranged into:

B P2 0C,
" 2B da
This apparently simple and “elegant” method calls has a major drawback. Since the
compliance is numerically approximated by Eq. 13.4, its derivative is very likely to
be a very poor numerical approximation resulting in gross error when Eq. 13.8 is
determined.

(13.7)

K (13.8)

In summary, the initial unload reload will give E.f¢, and each subsequent one will give
a K. corresponding to a different crack length. Thus more than one fracture toughness
value can be obtained from a test whereas only one value of G can be obtained.

13.2 Nonlinear Fracture Models

13.2.1 Hillerborg Characteristic Length

13 The characteristic length, [, proposed by Hillerborg (Hillerborg, A. and Modéer, M. and
Petersson, P.E. 1976) in 1976 is a material property which gives an indication of the material

Victor Saouma Fracture Mechanics
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16 Thus in this simple, clear, and elegant model we implicitly account for softening by in-
troducing a second parameter (CTOD), whereas in Hillerborg’s approach the SIF concept is
entirely discarded and replaced by a fictitious load, the distribution of which requires at least
two parameters.

17 This model has been shown to yield results that are specimen size insensitive. A minor
drawback of this model is that it requires an analytical expression of the COD and K; along
the crack for the geometry considered. In most cases this entails a finite element calibration.

18 This model requires an analytical expression for K; and the CTOD along the crack for
each geometry considered, which in most cases can only be obtained through a finite element
calibration. The model distinguishes between notch and crack length, and CTOD., is evaluated
at the notch, thus the nonzero value for CT'OD.. Based on an extensive test program, the
critical values, K }S; and CTOD., were found to be size-independent material properties.

19 Finally, when combined with Young’s Modulus, E, a single fracture parameter describing
the material, termed the critical material length, @), was derived:

2

E-CTOD

Q= ( R _C> (13.13)
KIC

The @Q-value is related to the brittleness of the specimen. For large ()-values the material

exhibits a high brittleness.

13.2.3 Size Effect Law, Bazant
Refer to chapter 14.

13.2.4 Carpinteri Brittleness Number

20 In fracture testing, failure may be caused by different mechanisms: (1) ultimate strength
collapse (SOM), and, (2) fracture collapse in terms of LEFM. The dimensionless brittleness
number, s, was developed by Carpinteri to assess the existence of either one of the two failure
mechanisms (Carpinteri 1982a), (Carpinteri 1982b), (Carpinteri 1986). This parameter depends
on the fracture toughness, K., the tensile strength, f/, and on a dimension d characteristic of
the specimen (or structure) geometry being considered:

5 — Kie
fivd

(13.14)

21 For large brittleness numbers, i.e., small specimen dimension d, SOM governs, and the in-
terpretation of tests through Fracture Mechanics (FM) is not valid. Conversely, for small
brittleness numbers, fracture mechanics is applicable since the specimen is more brittle. The
boundary between SOM and FM applicability, is defined by the critical brittleness number, s,
which is obtained from the nominal stress at failure.

Victor Saouma Fracture Mechanics
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13.3.2 Bazant Brittleness Number, 3

27 The intersection between the SOM and LEFM approaches in the size effect diagram (Fig.

14.10) where
okEIM = 530M (13.20)

defines the point where the brittleness number, 3 is equal to 1, or d = A\gd, = dy. From

Pmaa:

Ki.=D——Vd (13.21)
t-d
Pmax K
RN (13.22)
td Dv/dy
and combining with
Pmaﬂf O.N
== 13.2
t-d C (13.23)
we obtain pmas g
t
= 13.24
td C ( )
Eqgs. 13.22 and 13.24 are combined into one equation, yielding:
12 2
d C
t “0 2
=|5=) =K 13.25
K2, (BD) ( )
2s Because LEFM is assumed valid, substituting K?, with Gp - E (Eq. 13.16), leads to:
ft{QdO do 2
= — =K 13.26
GrE g ( )

29 Thus, the brittleness number § used to assess the applicability of LEFM in the Size Effect
Law can be related to Hillerborg’s characteristic length, .. Eq. 13.26 indicates that d/l., has a
similar significance to the ratio between structural dimension d and maximum aggregate size d,
in the Size Effect Law. Since [, is a comprehensive parameter to describe material fracture, the
d/d, ratio in the Size Effect Law may be replaced by d/l., (Brithwiler, E., 1988). Comparison
between the Size Effect Law and the Fictitious Crack Model showed that both models yield
good agreement in the prediction of the size effect (Hillerborg, A. 1985b) and (Bazant 1985).

13.3.3 Carpinteri Brittleness Number, s

s0 Squaring the expression s of the brittleness number (Eq. 13.14), and assuming that K]2c =
E - Gp, when LEFM is valid, the following expression is obtained:
EG l
2= =k (13.27)
fird o d
or
lch

=4/ = 13.28
=1 (13.25)
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1. Crack size: In a “large” crack, the effect of the process zone is smaller than for a “short”

one. Thus LEFM is more applicable for the large ones.

2. Type of loading: If a structure is subjected to a load rather than imposed displacements
(such as foundation settlements), than only a pre-peak response is of importance. Under
those conditions non-linear effects may be negligible compared to the ones induced by

LEFM.

3. Stability’: In a structure subjected to imposed load rather than imposed displacement
non-linear effects are not be as negligible in a stable structure as they are in an unstable

one.

Thus Table 13.2 provides some guidance for model selection. Accordingly we should select:

1. An NLFM for an arch dam which cracking is caused by foundation settlement.

2. An LEFM model for a dam in which cracking is caused by flooding, no matter how small

or large the

crack is.

H Loading “Small” Crack ‘ “Large” Crack H
Load Control, Unstable LEFM LEFM
Load Control, Stable NLFM LEFM
Displacement Control NLFM LEFM

Table 13.2: When to Use LEFM or NLFM Fracture Models

sa In all cases, it should be emphasized that ideally a non-linear analysis is to be undertaken,
however in many (but not all) cases the complexity and expenses associated with such an
analysis yield results very close to the ones obtained from a linear elastic ones. Thus ultimately
the type of analysis to be undertaken hinges on both technical and economical considerations.

5A stable structure is one in which K; decreases with crack length, in an unstable one the stress intensity
factor Kt increases with crack length.

Victor Saouma
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Chapter 14

SIZE EFFECT

Paper in print

1 Crack bridging occurs when cohesive stresses join the opposite faces of a crack, shielding the
tip from the full effect of the applied load and thus giving rise to increased fracture resistance.
Cohesive stresses are present both in elasto-plastic materials such as metals (through crack
tip yielding), (Dugdale 1960), (Barenblatt 1962) and in quasi-brittle ones. In the later, they
are present not only in cementitious materials, but also in ceramics, (Saouma, Natekar and
Shaizero 2002) and are caused by reinforcing fibers, particles (such as aggregates or inclusions),
or simply regions of microscopically irregular crack surfaces causing topological interference.

> Cohesive stress models were first suggested by Dugdale (1960) using a constant stress, then
Barenblatt (1962) generalized this concept to a more general stress distribution, one which
causes the crack faces to close smoothly. It should be noted that those two pioneering studies
attributed different causes to the cohesive stresses. For Dugdale it was caused by macroscopic
plasticity (and can be of any size) while for Barenblatt it was caused by molecular cohesion (and
must be restricted to a relatively very small zone), (Kanninen and Popelar 1985). Finally, most
recently Hillerborg, A. and Modéer, M. and Petersson, P.E. (1976) assumed a nonlinear model
where the stress is a function of the crack opening. The first two models are most appropriate
for metals to account for the presence of a plastic zone, whereas Hillerborg’s model is more
suited for cementitious material with a fracture process zone.

3 In both Dugdale and Barenblatt solution, the stress intensity factors caused by the far field
load, and the cohesive stresses are assumed to cancel each other. Hence, implicit in this as-
sumption is a zero material fracture toughness.

4 Finally, Hillerborg does not consider any singularity at the tip of the crack. Implicit in his
approach is that there can not be a stress singularity at the crack tip since the criterion for crack
propagation is based on the crack tip stress. This assumption was recently challenged by Xu
and Reinhardt (1998) who developed the double-K criterion where Kp(Aa) = K + K (Aa)
and K (Aa) = F(fi, f(0),Aa). In this model, developed for concrete, the resistance to crack
growth (right hand side) is first set to the inherent toughness, and then to a cohesive term.
Hence, contrarily to Hillerborg’s model, a cohesive stress does not necessarily eliminate the
stress singularity, and as such crack propagation is no longer governed by a stress criteria, but
rather by a modified linear elastic fracture mechanics one. This model enables us to distinguish
between initial crack growth (in the absence of a fracture process zone) governed by K }76” and
subsequent unstable crack growth in terms of K }2” + K% (Aa). Despite its appeal, this model
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10 This derivation would be characterized as semi-analytical, since it combines an analytical
derivation (albeit with some simplifying assumptions), and experimental derivation of constants
too complicated to be derived analytically. Finally, this derivation does not explicitly reference
a plasticity and/or a linear elastic fracture mechanics solution. Yet, those two solutions are
ultimately asymptotic to the derived size effect law.

14.1 Analytical Derivation

11 In this section, an alternate derivation of the size effect law is presented. Whereas it hinges
(for simplifying reasons) on Dugdale’s or Barenblatt’s model for the cohesive stresses (in lieu
of Hillerborg’s fracture energy), it will be shown that a purely analytical expression could be
derived, hence problem specific numerical values of B can be obtained.

12 This approach is based on classical elasto-plastic fracture mechanics, (Broek 1986), where in
its simplest form the stress intensity factors caused by the cohesive stresses (in a plastic zone
or process zone), are assumed to cancel the ones caused by the far field load. Hence, contrarily
to the original derivation by Bazant, the size effect law will be shown to have explicit roots in
plasticity and linear elastic fracture mechanics theories. As a result, it will be shown that not
only quasi-brittle materials exhibit a size effect, but elasto-plastic ones as well.

14.1.1 Constant Cohesive Stresses
14.1.1.1 Central Crack
13 Starting with a general case, we consider an infinite plate subjected to a far field uniform

tensile stress ¢ and a crack of length 2a, at the tip of which we have a uniform cohesive
compressive stress (Dugdale type) equal to the tensile strength f/, Fig. 14.2.

Figure 14.2: Central Crack With Constant Cohesive Stresses

Victor Saouma Fracture Mechanics
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14.1.1.2 Edge Crack

19 We next consider an arbitrary geometry of a cracked structure whose stress intensity factor
due to the far field stress can be expressed as

K, =aoyma (14.10)
where « is a coefficient which accounts for geometry, boundary conditions, and load.

20 On the other hand, the stress intensity factor corresponding to a constant stress, Fig. 14.4
is given by Stevens and Guiu (1994) as

Ky = —flv/mafy (14.11)
where

£y

d, Ce
a

Figure 14.4: Dugdale’s Model

1 1 1
fy = 0.903s/2 + §0.440683/ 24 g0.499735/ 2_ ?0.143837/2

1
—50.0457839/ 2 (14.12)

and s = cy/a. Since at most s = 1, we keep only the first term which has an exponent lower
than one.

21 Equating K, to K, we solve for the far field nominal stress ¢,, which would result in a zero
net stress intensity factor at the tip of the crack. For this problem, we obtain

0.903
= (14.13)
Expressed in terms of r = ag/cy, s = 1/(1 +r), the far field nominal stress will be
0.903 1
op = fl (14.14)

o 1+ r

—— ~—
B B

22 For an infinite plate with an edge crack, o = 1.1215 (Tada et al. 1973), and the resulting
nominal stress will be

(14.15)

This equation is shown in Fig. 14.5.

Victor Saouma Fracture Mechanics
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a a 1 F
Kb:/ KPda = / + x/a ft\/_dx (14.18)
ag

25 Equating this stress intensity factor caused by local plastification, to the far field stress
intensity factor given by Eq. 14.10 (with o = 1.1215) we solve for the nominal stress o, which
would cause the net stress intensity factor to be equal to zero. Using s = (a — ag)/a, and
expanding in terms of s about s = 0, we obtain

. 0.000124102  0.0000668046
In _ — — 0.000124102 + 0.535096+/5

I s NG
+0.06751755%/2 — 0.3881955%/2 4 0.19108s7/% — 0.4118465%/2

+0[s)° (14.19)

26 Even though s is very small, we can drop the first three terms which are negligibly small
compared to the others. This is first confirmed by replacing s with 1/(1 + r), and plotting

Eq. 14.19
omitted, F
potential ¢
0.4
0.35 |-\ ............ ............ ............ ............ ............ ............ ............ ............
03 b\ | = = Full Expression ]
' : : : — Frrst Three Terms Dropped
—

o
\29.25

©
0.2

0.15

0.1
5

Figure 14.7: Energy Transfer During Infinitesimal Crack Extension

Hence, we may now justifiably drop the first three terms in Eq. 14.19, and rewrite this

Victor Saouma Fracture Mechanics
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Figure 14.9: Three Point Bend Specimen with Linear Cohesive Stresses

s0 The stress intensity factor for an edge crack subjected to a linearly varying cohesive stress
(Barenblatt’s type) Kj, Fig. 14.6 was given by Equation 14.18.

As before, equating the two stress intensity factors, solving for o, substituting s = (a—ayg)/a,
and expanding in terms of s about s = 0, we obtain

: 2 . 2
2 = _ 0000067298 | 00000597828 | 100067298 + 1.06378+/5
fi s Vs

+8.32667 x 107175 + 0.1327835%/2 + O] (14.25)

As for Eq. 14.19, it can be shown that we can retaining the terms in s'/2 and s%/2 without loss
of accuracy, and thus obtain

Ols? (14.26)

1.06738f/ (1 0.124401)
g, =
Vi L+

31 Again, this newly derived size effect law for a three point bend beam with a linearly varying
cohesive stress along the fracture process zone is to be contrasted with Eq. 14.2. Should we
drop the second term within the parenthesis, then and only then we will recover an equation
analogous to Eq. 14.2.

14.2 Discussion

14.2.1 Comparison with Experimental Data

s2 In order to assess the results, we closely examine experimental size effects tests on three point
bending concrete specimens as reported in Table 1.5.2 of Bazant, Z. and Planas, J. (1998).

Table 14.1 gives the compressive strength and B f/. For the sake of simplification, we assume
i =0.1f., and thus determine the experimental value of the B coefficient.

The average experimentally determined value is 1.39 (with a standard deviation of 0.61),
and compares relatively well (given the assumption of a Barenblatt cohesive stress model) with
the analytically derived value of 1.07 in Eq. 14.26. Interestingly enough, we note that the
experimentally determined B value is clearly inversely proportional to the nominal specimen
size Do.

Victor Saouma Fracture Mechanics
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10.

11.

12.

strength criterion governs.

. Again for small structures (small ), B = %% and can be determined from plastic limit

t
analysis.

. For structures with very large size compared to aggregate size, %0 > 1. Thus Eq. 14.27

reduces to fi ~ f{\/5 20 and we see that “For very large concrete structures, such as dams
(or large rock masses), Eq. 14.27 asymptotically approaches the size effect of linear elastic
fracture mechanics”.

. In general, Eq. 14.27 represents a gradual transition from the strength criterion for small

structures to linear elastic fracture mechanics for large structures.

. To assess the size effect law, geometrically identical specimens, but with different sizes

must be tested. Then Eq. 14.27 can be cast in the form:

Y =a+b\= (14.28)

1
—3
ON
where a = % and b = 32 o . From statlstlcal regression analysis, the intercept a, and the

slope b can be determined, and then B = % and A\g = 3

If 2 5. = B is less than 0.1, then a strength criterion must be used, and if 3 is greater than
10, then a LEFM criterion is to be used. Note that those are arbitrary guidelines.

. The point of intersection of the two asymptotes corresponds to 5 = 1.

. At no stage did we have to introduce (explicitly or implicitly) any LEFM equation (in

the sense of a stress singularity at the crack tip).
The square root relationship between f;* and d (through \) comes from:

e an appropriate choice of the normalizing parameter for the crack length a in defining
a1 and ao.

e expression for G in terms of the square of f/ in Eq. ??. Although it is correct to
directly relate Gp to the area under the uniaxial stress strain curve (a measure of
the energy required to produce a unit surface), the square component is again not
linked to LEFM.

It can be shown, (Bazant and Cedolin 1991) that the fracture energy Gr can be recovered
from the Size Effect Law

There is a strong analogy between the size effect and column buckling, Fig. 14.11, Table
14.2.

14.2.3 LEFM vs NLFM Analyses

36 Ideally, we should extend the analytical solution to encompass Hillerborg’s model as applied
to a three point bending concrete specimen. To the best of the author’s knowledge only two
researchers addressed this complex nonlinear problem. Xu and Reinhardt (2000) developed a
closed form solution, albeit an empirical one (as termed by its authors). Another solution was

Victor Saouma Fracture Mechanics
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presented by Karihaloo (1999) who again indirectly solved this problem, but with some rather
restricting assumptions by enforcing a zero net stress intensity factor at the tip of the FPZ.
Because of the restrictions imposed to those two solutions, the authors have not considered
them in this study.

37 In a nonlinear fracture mechanics analysis the crack growth criteria is stress based, i.e the
crack tip maximum tensile stress can not exceed the (non-zero) concrete tensile strength. Al-
ternatively, in an LEFM analysis, we can set as a criteria a zero fracture toughness.

3s Whereas both criteria are readily accepted by the research community, practicing engineers
have difficulties in accepting a non-zero tensile strength (hence rendering a NLFM analysis
impossible), but can accept a small (preferably zero) fracture toughness, (Federal Regulatory
Commission 1991) (in this context, the double-K method might be more acceptable to practicing
engineers than solutions based on G and a non-zero f{). By the same token, a NLFM analysis
should extend the fracture process zone to the point where the stress singularity no longer
exists.

39 In order to highlight the duality between a zero fracture toughness criteria in an LEFM
analysis, and a non-zero tensile strength criteria in a NLFM analysis a series of numerical
analysis were performed. Considering a three point bend specimen, with G =100 N/m, f/=2
MPa, S/W =8, a/W = 0.6, so=100 mm, beams with sg, 10s¢, 50s¢p and 100sy were analyzed
using the code Merlin (Cervenka, Reich and Saouma 1997-2003). Through those analyses, the
two stress intensity factors K, (caused by the external load) and K} (caused by the cohesive
Hillerborg’s stress) were determined. Whereas contour integral techniques should be favored,
one should be careful to leave a small zone at the tip of the crack traction free, otherwise the
J integral will be equal to zero. Hence, in the context of this analysis (with surface traction on
the crack faces) we used singular elements.

10 In each analysis, P4, corresponded to the onset of unstable crack growth (based on tensile
stress at the crack tip), and the corresponding stress intensity factor K, were determined. It
should be noted that in our implementation of the interface element (based on the extended
Hillerborg’s model) pre-peak crack opening can occur. This results in a nonlinear pre-peak
load-cod curve.

11 Whereas the variation of P4, with respect to s was indeed according to Bazant’s size effect
law, the net stress intensity factors at P4, ranged between 0.05 and 1.5 MPa/mm. Given
that a representative value for the fracture toughness of concrete is about 1 MPay/m or 31
MPay/mm, the net stress intensity factor can be considered as essentially zero. These values
should be independent of the tensile strength, as a higher f; would result in a larger external
load, and a higher K,, but also in a higher (negative) K} caused by the cohesive stresses.
Indeed, when the tensile strength was increased from 2 MPa to 4 MPa, P,,., was about twice
the original values, however there was no discernable variation in K .

42 Thus, we conclude that for all practical purposes a NLFM analysis yields a very small non-
zero stress intensity factor in comparison with fracture toughness. Hence, practicing engineers
who accept a zero fracture toughness LEFM analysis should be reassured that a non-zero tensile
strength in the context of a NLFM is, for all practical purposes, identical.
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Chapter 15

FRACTALS, FRACTURES and
SIZE EFFECTS

Adapted from (7)

15.1 Introduction

15.1.1 Fracture of Concrete

There is not yet a standard for concrete fracture testing although several have been proposed
(RILEM, 1985). Concrete fracture properties include fracture toughness K., characteristic
length [, brittleness number 3, fracture energy G, crack-tip opening displacement CTOD,
and at least three additional parameters that characterize the concrete strain softening curve.

This chapter addresses a technique that uses fractal geometry to determine whether there is
any surface indication of the direction of crack propagation in concrete and whether there is a
correlation between fracture properties (K. and G, which characterize the material resistance
to cracking) and the roughness of the fracture surface as characterized by the fractal dimension
D. The implications of the fractal nature of the cracked surface on the “true” fracture or surface
energy are then discussed.

15.1.2 Fractal Geometry

Although most manmade objects have linear or smoothly curvilinear shapes, natural objects
(such as rivers, mountains, clouds, and fractures) are commonly rough, fragmented, or dis-
continuous. The apparent randomness of these irregularities, coupled with our bias toward
Euclidian geometry, handicapped us in studying and properly modeling such objects until the
advent of fractal geometry (Mandelbrot, 1983) .

By definition, an inherent property of fractal objects is the statistical replication of patterns
at different scales; a magnified part of a fractal object is statistically identical to the whole.
Hence, Fig. 15.1-A illustrates the generation of a self-similar synthetic fractal curve, the triadic
Koch curve.. First, an initiator, which represents an initial geometric form, is defined, then a
generator, which describes a transformation on the initiator, is applied. As the transformation
operation is repeatedly applied to the figure, a fractal curve is generated. For the triadic Koch
curve, we note that at each step the number of line segments is increased by a factor of 4 and
that the length of each new line segment generated is one third the length of line segments
in the previous generation. This increases the total length of the fractal curve by four thirds
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Table 16.2: Experimentally obtained material properties of the concrete mixes used.

MSA ! MPa (psi) | f sp MPa(psi) | Eesr, MPa (ksi)

19-mm (0.75-in.) 25.6 (3,710) 2.81 (407) 18,000 (2,610)
38-mm (1.5-in.) 24.8 (3,600) 2.67 (388) 16,900 (2,460)
38-mm (1.5-in.) sub-angular | 36.6 (5,317) 3.96 (574) 23,200 (3,360)
76-mm (3.0-in.) 18.9 (2,740) 2.41 (349) 16,500 (2,400)

Figure 16.1: *Wedge-splitting specimen geometry.

of small concrete specimens (Hillemeier & Hilsdorf 1976, Linsbauer & Tschegg 1986, Brithwiler
1988, Brithwiler & Wittmann 1990). The WS specimen has a large fracture area compared to
the concrete volume, approximately 4.6 times greater than a commonly used three-point bend
(TPB) beam geometry (RILEM 1985) of equal volume. The large fracture area compared to
the aggregate size and specimen volume makes the WS geometry well suited for testing large
MSA and specimens under laboratory conditions.

The dimensions of the WS specimens tested in the experimental program are summarized in
Table 16.3. The specimen dimensions and aggregate sizes were selected to enable a comparison

Table 16.3: Wedge-splitting specimen dimensions.

| Specimen Dimensions, cm (in.) |

|| Specimen Type | H | w | t S | D | ao | h ||
“Small” 31 (12.0) | 31 (12.0) | 23 (9.0) | 6 (2.25) | 3 (1.0 4.5(1.75) 20 (8.0)
“Medium” 91 (36.0) | 91 (36.0) | 41 (16.0) | 15 (6.0) | 8 (3) 15.2 (6.0) | 61 (24.0)
“Large” 152 (60.0) | 152 (60.0) | 41 (16.0) | 15 (6.0) | 8 (3) | 30.5 (12.0) | 107 (42.0)

with results previously obtained by other researchers in the academic community, and to predict
fracture properties of dam concrete with intermediary values to ensure a continuity of results.

Specimen construction consisted of wooden formwork built for the placing of the concrete, a
sharpened 3.2-mm (0.125-in.) thick steel plate mounted inside each form to obtain the vertical
notch normal to the load line, and two hollow steel sleeves flanking the plate. Two different
ready—mix suppliers delivered the concrete. The first provided the 19-mm and 38-mm MSA
mixes and the other the 76-mm MSA concrete mix. In all specimens, with the exception of the
cold-joint (CJ) specimens, the concrete was placed with the notch in the vertical direction, and
cured at room temperature in the laboratory for at least 28 days prior to testing.

For the CJ specimens, the concrete was placed in two separate lifts, with the notch plate
initially in a horizontal orientation. The tendency of the crack to propagate into the cold-joint,
which is a region of inherent weakness, was studied through a slight offset between the initial
notch and the level of the concrete in the first lift. Three days after the first lift was placed, the

Victor Saouma Fracture Mechanics
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16.2.3 Testing Procedure

The experimental setup of the electronic controller, the data acquisition system, and the testing
machine for the WS specimen tests are shown in a simplified block diagram in Fig. 16.3. In the

Figure 16.3: *Block diagram of the experimental system.

WS specimen experiments, the primary deformation monitored was the crack—mouth opening
displacement (CMOD). The CMOD was measured on the top surface of the specimen by a clip
gage mounted over the mouth of the initial notch. The closed-loop servo-hydraulic test machine
used a programmed constant rate of CMOD (1.0-um/sec, or 40-pin/sec) as the feedback control
to obtain stable crack growth with structural post-peak response. During the test, the vertical
load and the CMOD were monitored and recorded using a standard data acquisition system.
Unload /reload cycles, which were used to monitor the change in the specimen compliance, or
flexibility, were performed. The experiment was performed until the specimen was split into
two halves.

The vertical force induced by the wedge fixture, Py, was directly obtained from the load cell
of the testing machine. The wedge fixture is a statically determinate beam, and therefore, the
splitting force is given by Pgp = %, where the wedge angle, «, is equal to 15°. (Frictional
forces were neglected; they were reduced by using hardened steel inserts along the inclined
wedge surface and needle bearings with a low coefficient of friction.) A typical Pgp vs. CMOD
curve representative of the WS specimens is presented in Fig. 16.4. In the Psp vs. CMOD

Figure 16.4: *Typical Psp vs. CMOD curve for a “Large” specimen.

curve, both linear and nonlinear responses in the ascending prepeak branch and a descending
postpeak branch can be observed.

16.2.4 Acoustic Emissions Monitoring

In several WS tests, the microcracking associated with fracture process zone (FPZ) formation
and with transient releases of elastic energy due to localized aggregate fracture and bond failure
were monitored with an acoustic emission (AE) sensor mounted on the surface of the specimen.
Inside the sensor, a piezoelectric crystal is stimulated by the stress waves and produces electrical
signals. The signals are then amplified, filtered, processed, and related to the behavior of the
material throughout the experiment.

The AE sensor was mounted on the face of the specimen in a direction such that the sensor
was normal to the predicted fracture plane. The sensor used during testing was sensitive in
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Chapter 17

SINGULAR ELEMENT

17.1 Introduction

1 For most practical problems, either there is no analytical solution, or the handbook ((Tada
et al. 1973)) ones are only crude approximation. Hence numerical techniques should be used.
Whereas Boundary Element Methods are increasingly being used, (Aliabadi and Rooke 1991),
they are far behind in sophistication the Finite Element Methods which will be exclusively
covered in this chapter. For an overview of early finite element techniques in finite elements the
reader should consult (Owen and Fawkes 1983), some of the more recent methods are partially
covered in (Anderson 1995). Finally, the Ph.D. thesis of Reich (1993) and of ? contain some
of the major extensions of modern techniques to include thermal load, body forces, surface
tractions in 2D and 3D respectively.

2 Numerical methods for fracture mechanics can be categorized in many different ways, in this
chapter we shall use three criteria:

1. Those in which the singularity is modelled, that is the r~2 stress field at the tip of the
crack is properly represented.

2. Techniques in which the SIF are directly evaluated as part of the augmented global stiffness
matrix.

3. Techniques through which the SIF can be computed a post priori following a standard
finite element analysis via a special purpose post-processor.

17.2 Displacement Extrapolation

3 This technique was the predominant one prior to the serendipitous discovery of the quarter
point singular element.

4 In early finite element studies of LEFM, it was recognized that unless singular elements could
be used, it would necessitate to have a very fine mesh at the crack tip to approximate the stress
singularity with non-singular elements.

5 Following a liner elastic analysis, the stress intensity factors were determined by equating the
numerically obtained displacements with their analytical expression in terms of the SIF. Such
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1. cover a brief review of the isoparametric element formulation

2. show how the element can be distorted in order to achieve a stress singularity

3. determine the order of the stress singularity

4. provide a brief review of all the historical developments surrounding this element

5. discuss the effect on numerical accuracy of element size, order of integration, and local
meshing around the crack tip

6. briefly mention references to other singular elements

17.4 Review of Isoparametric Finite Elements

12 In the isoparametric finite element representation, both the internal displacement and coor-
dinates are related to their nodal values through the shape functions:

YV
n

X,u 1 1

HED>
w={1} =%

where the N; are the assumed shape functions.

N, 0 T
N; 0 U;

13 The shape functions are obtained by mere inspection (i.e. serependitiously),

Ny = 3(1+&&) QA +mm) (& +mm—1) i=1,2,3,4
N = 5 (1-€)1+nmm) i=5,7 (17.4)
N; = 3(1+&) (1+7%) i=6,8

and are tabulated in Table 17.1.
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Chapter 18

ENERGY RELEASE BASED
METHODS

1 In this class of solutions, we will exploit the definition of the energy release rate G to derive a
simple method of determining the stress intensity factors. We shall distinguish between mode
I and mixed mode cases. The former one, although of academic relevance only, is a simple
introduction to the second.

18.1 Mode I Only

18.1.1 Energy Release Rate

2 Recalling that the strain energy release rate G is given by:

2
ov_Kr AU (18.1)

G:_%_F_Aa

a simple algorithm for the SIF calculation emerges:

1. For an initial crack length a, determine the total strain energy from either one of the
following approaches:

(a) U = u'Ku where u is nodal displacement, and K is the global structural stiffness
matrix.

(b) U = uP where P and u are the externally applied nodal load and displacement,
respectively.

2. Increase the crack length from a to a + Aa, Fig. 18.1, and reanalyze.

: o U+ra)-U _ AU _ K}
3. Determine G from G ~ ihd—a = Da = B

3 Note that:

1. This procedure requires two complete separate analyses.



Chapter 19

J INTEGRAL BASED METHODS

19.1 Numerical Evaluation

1 Within linear elastic fracture mechanics, the .J integral is equivalent to G and we have:

o1l od
G_J_—%—/r(wdy—t'%ds) (19.1)

2 Thus it is evident that we do have two methods of evaluating J: the first one stems from its
equivalence to the energy released rate, and the second one from its definition as an integral
along a closed contour. Evaluation of J according to the first approach is identical to the one
of G and has been previously presented.

3 In this chapter we shall present the algorithm to evaluate J on the basis of its contour line
integral definition. Whereas derivation will be for J integral only, its extension to J; is quite
straightforward.

1 If the stresses were to be determined at the nodes, than the numerical evaluation of J will
be relatively simple. However, most standard finite element codes only provide Gauss point
stresses, and hence care must be exercised in properly determining the J integral along a path
passing through them.

5 The algorithm for the J calculation closely follows the method presented in (Owen and Fawkes
1983), and is as follows:

1. First let us restrict ourselves to the more general case in which isoparametric elements
are used. Because the stresses are most accurately evaluated at the gauss points, the
path can be conveniently chosen to coincide with £ = .5 and/or n = 1n.s. For the sake
of discussion, let us assume that the element connectivity is such that the path is along
& = &cst, as in Fig. 19.1. We note that for corner elements the integration will have to be
performed twice along the two directions.

2. Now let us start from the basic definition of J:
od
= dy —t- —d 19.2
J /Fw Yy 5 05 (19.2)

where t is the traction vector along n, which is normal to the path; d is the displacement
vector; ds is the element of arc along path I'; and w is the strain energy density. We note
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where n1 and no are the components of n, which is a unit vector normal to the contour
line at the Gauss point under consideration.

8. Having defined all the terms of J, we substitute in Eq. 19.2 to obtain the contribution to
J from a particular Gauss point within an element.

1
J¢ = / 1 |:0—m8_1;+7—my (@"‘F@) + av:| ay
-1

2 17%a ay az) " Yoyl on
~—
w dy
ou v
— (ozny + szng)% + (Tayn1 + oyna) p
t-24
oz 2 Ay \ 2
— - d 19.
\/<077) * <077> 7 (19.9)

ds
1
= / Idn
-1

9. Since the integration is to be carried out numerically along the path (using the same
integration points used for the element stiffness matrix), we have:

NGAUS
Jo = Z I(&p, ng) Wy (19.10)
q=1

where W, is the weighting factor corresponding to 7, and NGAUS is the order of inte-
gration (2 or 3).

10. Stresses 0, 0y, Tuy are readily available at the Gauss points.

11. %, g_;j’ %, and g—z are obtained through the shape function. For instance g—g = Laaji L {u;}

861;& is the cartesian derivative of the shape

where the u; are the nodal displacements and
function stored in the [B] matrix:

ox ON:

Bl=| 0 % (19.11)
ON; ON;
dy ox

where ¢ ranges from 1 to 8 for quadrilateral elements.

12. Another term not yet defined in Eq. 19.9 is g—%. This term is actually stored already in
the Gauss point Jacobian matrix:

9z Oy
[J] = [ e & ] (19.12)
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Chapter 20

RECIPROCAL WORK
INTEGRALS

Chapter adapted from (Reich 1993)

20.1 General Formulation

1 In addition to conservation laws, a form of Betti’s reciprocal work theorem (Sokolnikoff 1956)
can also be exploited to directly compute stress intensity factors (Stern 1973). The reciprocal
work theorem defines the relationship between two equilibrium states for a solid.

2 For a solid free of body forces and initial strains and stresses the reciprocal work theorem is

defined as

%tiﬂidl“ = ffiuidl“ (20.1)
r r

where € is any simply connected region within the solid and I' is the contour of that region; u;
and t¢; are the displacements and surface tractions, respectively, associated with one equilibrium
state and i;; and ¢; are the displacements and surface tractions, respectively, associated with
another equilibrium state.

3 The equilibrium state defined by w; and ¢; is called the primary state and the equilibrium
state defined by @; and ¢; is called the complementary or auxiliary state.

1 To apply the reciprocal work theorem to a cracked solid the simply connected region €2 must
be defined such that the singularity at the crack tip is avoided. This is accomplished by defining
a pair of surfaces, I' and I'¢, that begin on one crack surface and end on the other.

5 I is an arbitrary surface defined in the counter-clockwise direction around the crack tip but
far away from it.

6 I'c is a circle of radius € centered on the crack tip that is defined in the clockwise direction
around the crack tip completely inside I'.

7 Another pair of surfaces, I'; and T}, corresponding to the crack surfaces complete the defi-
nition of T, as is shown in Figure 20.1. T';" is defined on the upper crack surface between I' and
I'c and I'; is defined on the lower crack surface bewteen I'c and I'.



Chapter 21

FICTITIOUS CRACK MODEL

Originally published as:

Implementation and Validation of a nonlinear fracture model in a 2D/3D finite element
code by Reich, Plizzari, Cervenka and Saouma; in Numerical Models in Fracture of Concrete;
Wittman Ed., Balkema (1993).

1 An incremental formulation for the Fictitious Crack Model (FCM) will be presented. The
computational algorithm treats the structure as a set of sub-domains bonded along assumed
crack paths. The crack paths are defined by interface elements that initially act as constraints
enforcing the bond between adjacent sub-domains, but change state to function as standard
interface elements as the crack propagates. Constraints are enforced on the global system of
equations using a penalty approach.

2 A load scaling strategy, which allows for load controlled analyses in the post-peak regime, is
used to enforce stress continuity at the tip of the Fracture Process Zone (FPZ).

3 To demonstrate the accuracy of the computational algorithm, a series of three wedge-splitting
(WS) test specimens are analyzed. Specimen sizes are 31, 91, and 152 cm (1, 3, and 5 ft).
Material properties for the concrete are taken as the mean values of the observed experimental
results for all specimen sizes. The computed results are compared to the envelopes of the
experimental response for each specimen size.

21.1 Introduction

4 The most commonly implemented nonlinear fracture model for concrete using the discrete
crack approach is the FCM (Hillerborg, A. and Modéer, M. and Petersson, P.E. 1976). In
the FCM the zone of micro-cracking and debonding ahead of the crack front is modeled as a
cohesive stress that acts to close the crack. The magnitude of the cohesive stresses on the crack
surface are determined by a softening law that relates the stress to the relative displacement of
the crack surfaces through the fracture energy.

5 Many implementations of the FCM have been reported (Ingraffea and Gerstle 1984, Roelfstra
and Sadouki 1986, Dahlblom and Ottosen 1990, Bocca, Carpinteri and Valente 1990, Gopalarat-
nam and Ye 1991, Gerstle and Xie 1992), but none of the implementations based on a discrete
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Ve

Figure 21.1: Body Consisting of Two Sub-domains

10 Defining the interface surface as
PI:PI;,UPIU (216)

where I'7, is the bonded interface surface and I'7, is the interface surface subject to cohesive
stresses, the external work on the interface is written as

oult;dl = su tpdl' + | dult.dl (21.7-a)
Iy Iy, .

oultn,dl = — /[ oultydl — [ oult.dl (21.7-b)
Iy Flb Flc
Both t; and t. are unknown, but as t; acts on the bonded, or constrained, interface it will be

treated as a Lagrange multiplier
A=ty (21.8)

11 Substituting A into Equations 21.3 and 21.4-a-21.4-c and including the external work per-
formed by the surface tractions on the interface surface, the Principle of Virtual Work for
sub-domains 27 and €9 is written as

/ 5elod — [ ulbido — / sultidl — [ sufAdT — [ 6ultdl = 0

(951 (951 Ftl FIb F[C (219)
/ 5elaod) — [ ulbad — / sul§odl + / SulAdT + [ sult.dl = 0

QQ QQ th Flb FIC

12 On I'y, the displacements for the two sub-domains, u; \plb and ug |p 1, must be equal. This
condition can be written as a constraint in the strong form

u r,, —w |, =0, (21.10)
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Chapter 22

INTERFACE CRACK MODEL

This chapter was chapter 6 of the PhD thesis of Cervenka

1 This chapter discusses the nonlinear modeling of concrete using a discrete crack fracture me-
chanics based model. It addresses two important issues: mixed mode fracture in homogeneous
materials and interface fracture. A new three-dimensional interface crack model is derived. The
model is a generalization of classical Hillerborg’s fictitious crack model, which can be recovered
if shear displacements are set to zero. Several examples are used to validate the applicability
of the proposed interface crack model. First, direct shear tests on mortar joints are used to
test the model performance in the shear-compression regime. The more complicated combina-
tion of shear-tension is investigated using large biaxial tests of concrete-rock interfaces. The
applicability to mixed mode cracking in homogeneous concrete is tested using experiments on
modified Tosipescu’s shear beam and anchor bolt pull-out tests.

22.1 Introduction

2 The assumption of singular stresses at the crack tip is mathematically correct only within the
framework of linear elastic fracture mechanics, but physically unrealistic.

s In concrete materials, a fracture process zone (Section ?7) exists ahead of the crack tip.
The most popular model simulating this behavior is Hillerborg’s fictitious crack model (FCM)
described in Section ?? and Figure ??7. In a previous work, the classical FCM model was
implemented by (Reich 1993) for mode I crack propagation, and extended to account for the
influence of water pressure inside the crack.

1 The classical FCM model, Chapter 21, defines a relationship between normal crack opening
and normal cohesive stresses, and assumes that there are no sliding displacements nor shear
stresses along the process zone. This assumption is only partially valid for concrete materials.
Based on experimental observations, it is indeed correct that a crack is usually initiated in pure
mode I (i.e. opening mode) in concrete, even for mixed mode loading. However, during crack
propagation, the crack may curve due to stress redistribution or non-proportional loading, and
significant sliding displacements develop along the crack as schematically shown in Figure 22.1.
Therefore, it is desirable to incorporate these shear effects into the proposed crack model.

5 Finally for concrete dams, it is well accepted that the weakest part of the structure is the
dam-foundation interface, which is also the location of highest tensile stresses and lowest tensile
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Figure 22.2: Wedge splitting tests for different materials, (Saouma V.E., and Cervenka, J. and
Slowik, V. and Chandra Kishen, J.M. 1994)

is not abrupt, but is rather gradual. This is caused by the presence of the fracture process zone,
along which the energy of the system is gradually dissipated.

12 In the present model, the rock-concrete contact is idealized as an interface between two
dissimilar materials with zero thickness. Thus, the objective is to define relationships between
normal and tangential stresses with opening and sliding displacements. The notation used in
the interface model is illustrated in Figure 22.2.

13 The major premises upon which the model is developed are:

(1) Shear strength depends on the normal stress.

(2) Softening is present both in shear and tension.

(3) There is a residual shear strength due to the friction along the interface, which depends
on the compressive normal stress.

(4) Reduction in strength, i.e. softening, is caused by crack formation.

(5) There is a zero normal and shear stiffness when the interface is totally destroyed.

(6) Under compressive normal stresses neither the shear and nor the normal stiffnesses
decrease to zero. In addition, should a compressive stress be introduced in the normal direction
following a full crack opening, two faces of the interface come to contact, and both tangential
and normal stiffnesses become nonzero.

(7) Irreversible relative displacements are caused by broken segments of the interface mate-
rial and by friction between the two crack surfaces.

(8) Roughness of the interface causes opening displacements (i.e. dilatancy) when subjected
to sliding displacements.

(9) The dilatancy vanishes with increasing sliding or opening displacements.

14 Figure 22.4 illustrates the probable character of the fracturing process along an interface.

15 In the proposed model the strength of an interface is described by a failure function:

F=(1f+73) —2ctan(¢s)(or — o) — tan*(¢f) (0 — 07) =0 (22.1)
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where:
e ¢ is the cohesion.

e ¢y is the angle of friction.

ot is the tensile strength of the interface.
e 71 and Ty are the two tangential components of the interface traction vector.

e o is the normal traction component.

16 The shape of the failure function in two-dimensional case is shown in Figure 22.5, and it
corresponds to the failure criteria first proposed by (Carol, I., Bazant, Z.P. and Prat, P.C., 1992).
The general three-dimensional failure function is obtained by mere rotation around the o-axis.

T

Initial Failure
Function

1
. tan(

~
~

¢f)/
Py
,
P
.
¢
~
.
~

Final Failure .
Function

Figure 22.5: Failure function.

17 The evolution of the failure function is based on a softening parameter u'°® which is the
norm of the inelastic displacement vector u’. The inelastic displacement vector is obtained by
decomposition of the displacement vector w into an elastic part u¢ and an inelastic part u’. The
inelastic part can subsequently be decomposed into plastic (i.e. irreversible) displacements u?
and fracturing displacements u/. The plastic displacements are assumed to be caused by friction
between crack surfaces and the fracturing displacements by the formation of microcracks.

F =F(c,o1,05), c=cu), op=o4(u"")
u=u’+u, u=u’+u (22.2)
= (]| = (ul” 4y’ 4l
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