

2

﻿

POUL KLAUSEN

JAVA 4: JAVA’S
TYPE SYSTEM AND
COLLECTION CLASSES
SOFTWARE DEVELOPMENT

3

Java 4: Java’s type system and collection classes: Software Development
1st edition
© 2017 Poul Klausen & bookboon.com
ISBN 978-87-XXXX-XXX-X
Peer review by Ove Thomsen, EA Dania

http://bookboon.com

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

4

Contents

4

CONTENTS

	 Foreword	 7

1	 Introduction	 9

2	 Wrapper classes	 11

	 Exercise 1	 14

3	 Strings	 16

3.1	 StringBuilder	 18

3.2	 StringTokenizer	 19

	 Problem 1	 20

3.3	 Regular expressions	 23

	 Exercise 2	 36

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

5

Contents

4	 Inner classes	 38

4.1	 Iterators	 40

	 Exercise 3	 47

	 Exercise 4	 47

4.2	 Example: ZipCodes	 48

5	 Enumerations	 54

	 Exercise 5	 58

	 Problem 2	 59

6	 Exception handling	 70

6.1	 Checked exceptions	 74

6.2	 Unchecked exceptions	 81

	 Exercise 6	 83

7	 Generic types	 85

	 Exercise 7	 97

7.1	 More on parameters	 98

	 Exercise 8	 99

7.2	 Raw classes	 100

7.3	 Generic methods	 101

	 Exercise 9	 102

	 Problem 3	 104

7.4	 Bound parameter types	 107

	 Exercise 10	 110

7.5	 Generic types and inheritance	 111

8	 Lambda expressions	 115

8.1	 Anonymous classes	 115

8.2	 Methods as parameters	 119

8.3	 Examples of lambda expressions	 122

8.4	 Java functional interfaces	 129

8.5	 Event handlers	 129

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

6

Contents

9	 Collection classes	 131

9.1	 Overview of the collection classes	 131

9.2	 ArrayList	 134

9.3	 LinkedList	 138

	 Exercise 10	 144

	 Problem 3	 144

9.4	 HashSet	 145

9.5	 TreeSet	 149

	 Exercise 11	 150

9.6	 HashMap and TreeMap	 153

9.7	 PriorityQueue	 155

	 Exercise 12	 155

9.8	 The algoritms	 157

	 Exercise 12	 161

10	 Annotation	 162

11	 Packages	 164

12	 Final example	 166

12.1	 The task	 166

12.2	 Analysis	 167

12.3	 Design	 170

12.4	 Programming	 174

12.5	 Test	 177

12.6	 The last step	 178

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

7

Foreword

FOREWORD

This book is the fourth in a series of books on software development. The programming
language is Java, and the language and its syntax and semantics fills obviously much, but
the books have also largely focus on the process and how to develop good and robust
applications. This book has, however, only to a lesser extent focus on the process, but more
on the language and numerous of details regarding Java as an object-oriented programming
language. The book is thus primarily for the programmer and presents techniques that can
help to ensure the development of robust and maintenance-friendly programs, but also
techniques needed to know in order to develop programs in a modern programming language.
You can also say that the current book deals with details on concepts, you have met in the
previous books, but only have been touched without going in depth. The book is a natural
continuation of the book Java 3 on object-oriented programming and thus assumes that
the reader has a knowledge corresponding to what is addressed in Java 3.

As the title says this series of books deals with software development, and the goal is to
teach the reader how to develop applications in Java. It can be learned by reading about
the subject and by studying complete sample programs, but most importantly by yourself
to do it and write your own programs from scratch. Therefore, an important part of the
books is exercises and problems, where the reader has to write programs that correspond to
the substance being treated in the books. All books in the series is built around the same
skeleton and will consist of text and examples and exercises and problems that are placed
in the text where they naturally belongs. The difference between exercises and problems is
that the exercises largely deals with repetitions of the substance that is presented in the text,
and furthermore it is relatively accurately described what to do. Problems are in turn more
loosely described, and are typically a little bigger and there is rarely any clear best solution.
These are books to be read from start to finish, but the many code examples, including
exercises and problems plays a central role, and it is important that the reader predict in
detail studying the code to the many examples and also solves the exercises and problems
or possibly just studying the recommended solutions.

All books ends with one or two larger sample programs, which focus primarily is on process
and an explanation of how the program is written. On the other hand appears the code only
to a limited extent – if at all – and the reader should instead study the finished program
code perhaps while testing the program. In addition to show the development of programs
that are larger than the examples, which otherwise is presented, the aim of the concluding
examples also is to show program examples from varying fields of application.

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

8

Foreword

Most books also ends with an appendix dealing with a subject that would not be treated
in the books. It may be issues on the installation of software or other topics in computer
technology, which are not about software development, but where it is necessary to have
an introductory knowledge. If the reader already is familiar with the subject, the current
appendix can be skipped.

The programming language is, as mentioned Java, and besides the books use the following
products:

-- NetBeans as IDE for application development
-- MySQL to the extent there is a need for a database server (from the book Java 6

onwards)
-- GlassFish as a web server and application server (from the book Java 11 onwards)

It is products that are free of charge and free to install, and there is even talk about products,
where the installation is progressing all by itself and without major efforts and challenges.
In addition, there are on the web detailed installation instructions for all the three products.
The products are available on Windows and Linux, and it therefore plays no special role if
you use Linux or Windows.

All sample programs are developed and tested on machines running Linux. In fact, it plays
no major role, as both Java and other products work in exactly the same way whether the
platform is one or the other. Some places will be in the books where you could see that
the platform is Linux, and this applies primarily commands that concerning the file system.
Otherwise it has no meaning to the reader that the programs are developed on a Linux
machine, and they can immediately also run under Windows unless a program refers to
the file system where it may be necessary to change the name of a file.

Finally a little about what the books are not. It is not “how to write” or for that matter
reference manuals in Java, but it is as the title says books on software development. It is
my hope that the reader when reading the books and through the many examples can find
inspiration for how to write good programs, but also can be used as a source collection
with a number of examples of solutions to concrete everyday programming problems that
you regularly face as a software developer.

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

9

Introduction

1	 INTRODUCTION

In Java 1 and Java 3, I have relatively detailed treated Java’s types, basically divided into
value types and reference types. For reasons of practical programming you can go on with
what has already been said about types, but Java defines a lot more, and it is the subject of
this book. It’s kind of concepts, which purpose are to develop programs of better quality,
and also to write programs with less code. Part of the following concepts I have already used
several times, so the book also serves as an explanation of the concepts that I previously
have used without exactly explaining what happens.

The main concepts are

-- Wrapper classes
-- Strings
-- Inner classes
-- Exception handling
-- Generic methods and classes
-- Lambda expressions
-- Collection klasser

Most of what follows is something that you can live without, but conversely something
that can make life easier as a programmer, but also kan help to increase the quality of the
programs developed.

The title of this series of books is software development, and the title suggests, I want to
focus on the development process and to a lesser extent the Java programming language.
This is not so in this book, as there is largely talk about details of the language itself, but
also concepts that are part of any modern programming language.

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

10

Introduction

Here it is worth thinking about that Java from the start was designed to should be an
object-oriented language that was simple and easy to learn. Java has been a success and
has over time progressed much as the language is in use in more and more areas from
both the development of complex computer applications over the web applications to the
development of apps for mobile phones. This of course has caused the development of a
number of new APIs, each of which aims to support the development of a specific category
of applications or support a particular technology. At the same time the basic concepts
of the language are developed, really as a natural evolution of what has happened with
other programming languages, and where there are more and more concepts added into
the language that is many of the concepts discussed in this book. In principle, it is fine
as it helps software developers, but conversely there is a price, namely that the language
becomes more complex and difficult to learn, and it is indeed a significant step away from
what was originally the idea of Java. It is worth thinking about, because in the worst case
it could mean that the language die because of its own success, and in fact there are several
precedents of programming languages that has had wide circulation, which has constantly
evolved to finally departing at death because they were too complex and hopeless to learn.
Everything in life is a balance.

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

11

Wrapper classes

2	 WRAPPER CLASSES

Java’s type system consists as discussed in the previous book of a hierarchy of classes with
the class Object as the root. Beside there is the simple types primarily for numbers and
characters, and in some places it is a problem that these are not part of the object-oriented
class hierarchy. There are, therefore, for each of the simple types defined a class that
encapsulates the simple type. For example is the class Integer a class that encapsulates an int.
These classes are called wrapper classes, and besides they allow the variables of the simple
types to be used in the same way as other objects, the wrapper classes defines a number of
useful methods and constants for the simple types.

For for the numeric types, there are following wrapper classes

-- Byte
-- Short
-- Integer
-- Long
-- Float
-- Double

and the names should tell the primitive type as the class encapsulates. The six classes are
all derived from the class Number.

There are also wrapper classes to char and boolean and they are called respectively Character
and Boolean. Generally are the use of these classes without major challenges, but you should
study them well including to be aware of the methods they offer. As an example is shown
a method which uses some of the wrapper classes:

private static void test01()
{
 Integer a = new Integer(23);
 Integer b = 23;
 print(a);
 print(b);
 Double x = 3.14;
 print(x);
 Character c = 'A';
 print(c);
 print(19);
}

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

12

Wrapper classes

private static void print(Object obj)
{
 System.out.println(obj.getClass().getName() + " " + obj);
}

The method print() prints an Object as the name of its class as well as its value. The variable
a is an Integer object with the value 23, and you will notice that it is created with new as
other objects. b is also an Integer object, but is assigned the int value 23 directly. Where it
is legal, it is because the compiler uses a concept called auto boxing. This means that when
the compiler sees that the variable b is of the type Integer, and you try to assign a numerical
value, the compiler knows well that this value should be encapsulated in an Integer object,
and it will automatically execute b = new Integer(23). The same applies for variables x and
c, using the auto boxing to respectively a Double and a Character.

Note especially the last statement. The compiler will look for a print() method with an
int as a parameter. Such does not exist, but there is a print() method with an Object as
parameter, and the compiler will automatically boxes the value 19 in an Integer. Is the
method performed, you get the result:

java.lang.Integer 23
java.lang.Integer 23
java.lang.Double 3.14
java.lang.Character A
java.lang.Integer 19

The following method creates an ArrayList of objects of the type Number and adds four
items to the list:

private static void test02()
{
 ArrayList<Number> list = new ArrayList();
 list.add(2);
 list.add(3.14);
 list.add((short)5);
 list.add(7L);
 for (Number t : list) print(t);
}

Note especially that when the list is created, it is not necessary (but legally) to write:

ArrayList<Number> list = new ArrayList<Number>();

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

13

Wrapper classes

13

The compiler knows that list should be used for objects of the type Number. Also note that
the four objects that are added to the list has a different type. If the method is executed
is the result:

java.lang.Integer 2
java.lang.Double 3.14
java.lang.Short 5
java.lang.Long 7

Consider as the last example the following method

private static void test03()
{
 Integer[] arr = { 2, 3, 5, 7 };
 int s = 0;
 for (Integer t : arr) s += t;
 System.out.println(s);
}

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

14

Wrapper classes

Here is arr an array of the type Integer, which is initialized with four objects. Note that the
compiler performes auto boxing. Next, a loop which determines the sum of the elements
of the array. Here is s an ordinary int variable, and you ought really to write:

s += t.intValue();

but it is not necessary because the compiler use automatic unboxing. The compiler sees that
s is an int and know that it must use the value of the Integer object t.

EXERCISE 1

In this exercise you has to test the wrapper classes efficiency compared to the primitive
types. The representation of the primitive types as classes, other things being equal must
result in a performance loss.

Create a project that you can call Wrappers. Add the following method to the main class:

private static void test1()
{
 long t1 = System.nanoTime();
 double sum = 0;
 for (int i = 0; i < T; ++i) sum += Math.sqrt(i);
 long t2 = System.nanoTime();
 System.out.println(sum);
 System.out.println(t2 – t1);
}

Here is the method nanoTime() a method that reads the hardware clock and returns the
time in nano seconds. T is a constant that indicates the number of loop iterations to be
performed. Test the method by calling it from main(). The loop must iterate many times
to get a time that you can measure.

Then write a method test2() that do exactly the same as test1() when the second and third
statement should be replaced by:

Double sum = 0D;
for (Integer i = 0; i < T; ++i) sum += new Double(Math.sqrt(i));

Compare the two methods and the time difference.

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

15

Wrapper classes

The following methods determines the first prime number greater than or equal to a constant N:

private static void test3()
{
 long t1 = System.nanoTime();
 long n = N;
 while (!isPrime1(n)) ++n;
 long t2 = System.nanoTime();
 System.out.println(n);
 System.out.println(t2 – t1);
}

public static boolean isPrime1(long n)
{
 if (n == 2 || n == 3 || n == 5 || n == 7) return true;
 if (n < 11 || n % 2 == 0) return false;
 for (long t = 3, m = (long)Math.sqrt(n) + 1; t <= m; t += 2) if (n % t == 0)
 return false;
 return true;
}

The idea is that the method takes a long time, if N is large. Test the method for large
values of N. Finally, write a test method test4(), which is similar to the above, but uses a
prime method isPrime2(Long n), ie a method wherein the parameter’s type is a wrapper for
a long. The loop for testing for prime numbers must also use variables of the type Long.
After writing the method, compare with test3().

The result should be that you observe that it costs something in time to use wrapper objects
rather than primitive values, but actually surprisingly little. The reason is that the compiler
due to auto boxing knows the wrapper classes, and thus to a large extent can use them as
if it were primitive types.

Another way to measure the time is

long t1 = Calendar.getInstance().getTimeInMillis();

that measure the time in milliseconds. Write a test method that creates an ArrayList<Integer>
with a million random integers. Test how many milliseconds it takes to sort the list.
Remember that you can sort an ArrayList as follows:

Collections.sort(list);

Note that you can not create an ArrayList with elements of the type int. The type must be
a class type as such an Integer.

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

16

Strings

16

3	 STRINGS

The type String is a class, although in most cases you uses a String as the other simple data
types. In most cases, the difference is not of great importance, but in some contexts it is
something you should be aware of.

You should be aware that the class has a number of methods to manipulate strings, and
it pays to investigate which methods are available. Many of them I have used already and
more are used in the course of the books. The class also have useful static methods. I will
not discuss these methods here, but the application will appear in the books examples, and
I’ve already used many of these methods.

If you examine the documentation for the String class, you will see the definition

public final class String
 extends Object implements Serializable, Comparable<String>, CharSequence

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

17

Strings

This means that the class is defined final and thus can not be inherited. Moreover, you can
see that the class implements three interfaces. The second says that strings can be ordered
and exactly tells the interface, that the class implements a method

compareTo(String str)

which is the comparison method for strings that compares strings in alphabetical order.
When the class String implements this interface, it means among other things that strings
can be sorted with Java’s sorting methods. The last interface tells something about what a
string is. Internally is a String is an array of characters, and you can refer to the individual
characters with the method charAt(). An important characteristic of the class String is that
it is immutable, and that means that have you created a String, it can not be changed. For
instance you can not change a character in a string. If you, for example has the string

String s = "abcdefg";

and you want to change the character d to a big D, you must write something like the
following:

s = s.substring(0, 3) + "D" + s.substring((4));

Here, you take a substring consisting of the first three characters and concatenates it with
string consisting of the character D. This result is then concatenated with the substring
consisting of all characters from index 4 to the end of the string. Concatenation of two
strings create a new String object, and the above statement will create two objects, and the
variable s is set to refer to the result object instead of the original string. At the class in this
way is immutable sounds complicated, and it is at times too, but the reason is performance,
where it is important that the creation of string is effective and a string not fills more than
necessary. In practice it is not something you think much about when the compiler largely
treats strings as other simple types, and as the String class has many methods.

However, in special cases, it is important that you are aware that manipulation of strings
constantly creates new objects. If you considers the following method (a method in the
project Strings):

private static void test01()
{
 String s = "";
 long t1 = getTime();
 for (int i = 0; i < 100000; ++i) s += "A";

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

18

Strings

 long t2 = getTime();
 System.out.println(t2 – t1);
}

public static long getTime()
{
 return new GregorianCalendar().getTimeInMillis();
}

it creates a string consisting 100,000 occurrences of the character A, but the string is built
by adding one character a time. The original string s is extended by concatenation (the
operator +=). This means that the method creates 100,000 new objects, and each time must
create a new object on the heap, and the contents of the old object must be copied to
the new object. On both sides of the loop, I have read the hardware clock and finally the
method prints how long it took to execute the loop. It depends of course of the machine,
but on a (not very fast) machine, it has taken 6554 milliseconds and therefore about 6½
seconds, which is a long time.

3.1	 STRINGBUILDER

Now, it is of course a bit extremely to build a string on this way, but there are applications
where there is a need to perform many operations on strings. To this end, there is a class
StringBuilder, which is a class where you can manipulate the individual characters in a string,
and represents a string that can be expanded without the need to create a new object. In
principle, a StringBuilder is the same as an ArrayList, but simply a list where the elements
are of the type char. If the task was to build a string as above, you could do it with the
following method, which uses a StringBuilder:

private static void test02()
{
 StringBuilder b = new StringBuilder();
 long t1 = getTime();
 for (int i = 0; i < 100000; ++i) b.append("A");
 String s = b.toString();
 long t2 = getTime();
 System.out.println(t2 – t1);
}

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

19

Strings

19

If you execute the method on the same machine, it takes 9 milliseconds, and thus there is
a very big difference in performance. You should note that the algorithm (method) is the
same, and that the improvement therefore solely due to the class StringBuilder, and that it
is no longer necessary to create and copy the 100000 objects.

In the two methods I have read the hardware clock using the method getTime(), which returns
the number of milliseconds after 00:00:00:000. The method creates a GregorianCalendar
object that is defined by the interface Calendar. The constructor of the class GregorianCalendar
initializes the object by reading the hardware clock. The type defines and represents a date
and time for a particular day. A Calendar has many methods, and here among other things
a method get() which returns a specific value for a time where a constant indicates the value
you want to get. The class GregorianCalendar is the standard class in Java for dates and times.

3.2	 STRINGTOKENIZER

Java has a class for treatment of strings called StringTokenizer. I have used the class previously
in the last example in the book Java 3 to split a string into tokens, but it is generally used
to split a string in substrings, which are separated by one or more separation characters.
As an example, the following method defines a string that consists of integers separated by
either a comma or semicolon:

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

20

Strings

private static void test03()
{
 StringTokenizer tk = new StringTokenizer("2;3,5;7,11;13,17;19", ",;");
 int sum = 0;
 while (tk.hasMoreTokens()) sum += Integer.parseInt(tk.nextToken());
 System.out.println(sum);
}

The method uses a StringTokenizer to split the string in numbers and determine their sum.

PROBLEM 1

In Java 2, I have created a class library named PaLib. In this problem, you must expand
this library with a new class.

Start with an copy of the library and open the copy in NetBeans. To the package palib.
util you must add the following class, which defines some methods that may be useful for
manipulating strings:

package palib.util;

import java.util.*;
/**
 * Class defining methods of operations on strings.
 */
public abstract class Str
{
 /**
 * Method which cuts off a string of specific length n.
 * If the string length is greater than n, the operation is ignored and the
 * string is returned unchanged.
 * @param s The string that must be cut off
 * @param n The length of the resulting string
 * @return The string cut to length n
 */
 public static String cut(String s, int n)
 {
 …
 }

 /**
 * Method as left adjusts a string in a field of width n.
 * If the string length is greater than n, the operation is ignored and the
 * string is returned unchanged.
 * @param s The string needs that has to be adjusted
 * @param n The width of the field
 * @param c The padding char that field has to be filled with.

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

21

Strings

 * @return The string left adjusted in a field of width n.
 */
 public static String left(String s, int n, char c)
 {
 …
 }

 /**
 * Method as right adjusts a string in a field of width n.
 * If the string length is greater than n, the operation is ignored and the
 * string is returned unchanged.
 * @param s The string needs that has to be adjusted
 * @param n The width of the field
 * @param c The padding char that field has to be filled with.
 * @return The string right adjusted in a field of width n.
 */
 public static String right(String s, int n, char c)
 {
 …
 }

 /**
 * Method which centers a string in a field of width n.
 * If the string length is greater than n, the operation is ignored and the
 * string is returned unchanged.
 * @param s The string needs that has to be adjusted
 * @param n The width of the field
 * @param c The padding char that field has to be filled with.
 * @return The string adjusted center in a field of width n.
 */
 public static String center(String s, int n, char c)
 {
 …
 }

 /**
 * Returns the sum of a number of decimal numbers delimited by the character c.
 * If an item (number) can not be parsed into a double, it should just be
 * igonered.
 * @param s String representing a number of numbers separated by the character c
 * @param c The character that separates the numbers
 * @return The sum of the numbers
 */
 public static double sum(String s, char c)
 {
 …
 }
}

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

22

Strings

22

You should note that the class is defined abstract. This means that the class can not be
instantiated, and since it has only static methods, it makes nor no sense.

Once you have written the class, you should test your class library with the following test
program:

package strprogram;

import palib.util.*;

public class StrProgram
{
 public static void main(String[] args)
 {
 String s = "1234567890";
 System.out.println(Str.cut(s, 8));
 System.out.println(Str.left(s, 15, '#'));
 System.out.println(Str.right(s, 15, '#'));
 System.out.println(Str.center(s, 15, '#'));
 System.out.println(Str.sum("2 + 3 + 5.25 + 7.75", '+'));
 }
}

http://s.bookboon.com/IE

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

23

Strings

12345678
1234567890#####
#####1234567890
###1234567890##
18.0

I have called the test project StrProgram.

3.3	 REGULAR EXPRESSIONS

A regular expression is a concept that is closely related to strings, and you can use regular
expressions to define patterns for strings, and then you can ask if another string has one or
more substrings that match this pattern. In Java, regular expressions are implemented by two
classes, which are called Pattern and Matcher. The classes are defined in the package java.util.
regex. The syntax for regular expressions is relatively complex and the concept is introduced
most easily by means of examples. I will therefore start with the following method:

private static void test04()
{
 while (true)
 {
 String udt = enter("Regular expression: ");
 if (udt.length() == 0) break;
 Pattern pattern = Pattern.compile(udt);
 while (true)
 {
 String str = enter("Search string: ");
 if (str.length() == 0) break;
 Matcher matcher = pattern.matcher(str);
 boolean found = false;
 while (matcher.find())
 {
 System.out.printf(
	 "The text \"%s\" found with start index %d and end index %d\n",
	 matcher.group(), matcher.start(), matcher.end());
 found = true;
 }
 if(!found) System.out.println("No match found");
 }
 }
}

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

24

Strings

The method is a simple console application that runs in a dialog with the user. It uses the
method enter(), which is a simple input method for entering a string. The program runs in
an infinite loop. For each repetition, the user must enter a string for a regular expression,
and if it is not the empty string the program creates a Pattern object that represents the
regular expression. This is done by using a static method compile() in the class Pattern.
Next, the program starts an inner loop, which is also an infinite loop. Here the user must
enter the string that should match the regular expression, and if it is not the empty string
the program creates a Matcher object using the regular expression pattern. For this Matcher
object match is called a method find(), which searches for a substring that matches the
regular expression. As long as there is such a substring, it is printed together with its start
and end index.

I will use the above method to illustrate the syntax of regular expressions, and the meaning
is that you should continue with your own expressions.

The simplest regular expression is simply a string and where a second string that contains the
first string is matching the expression. Below is an example of a run of the above program:

Regular expression: Knud
Search string: Det er fra Knud og Agnes Knudsen Borremose
The text "Knud" found with start index 11 and end index 15
The text "Knud" found with start index 25 and end index 29
Search string:

That is, I as regular expression entered

Knud

while I, as a search string entered

Det er fra Knud og Agnes Knudsen Borremose

The result shows that the search string contains two substrings that matches the regular
expression.

To specify patterns you needs special characters, called meta-characters that has a special
meaning in a regular expression. There are following characters:

< ([{ \ ^ – = $! |] }) ? * + . >

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

25

Strings

25

If there is a need for these characters not to be interpreted, but is perceived as common
characters in the text, you can prefix the character a backslash.

One of the basic patterns are character classes that you define as follows:

-- [abc]		 all characters a, b and c
-- [^abc]		 all characters that is not a, b and c (also called negation)
-- [a-zA-Z]		 all characters from a to z and from A to Z (union)
-- [a-d[m-p]]	 all characters from a to d and m to p (same as [a-dm-p])
-- [a-z&&[def]]	 all characters d, e and f (intersection)
-- [a-z&&[^bc]]	 all characters from a to z but not b and c (set difference)
-- [a-z&&[^m-p]]	 all characters from a to z but not m to p (same as [a-lq-z])

If you, as an example, consider the regurlar expression

[hkr]at

http://s.bookboon.com/EOT

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

26

Strings

it matches the substrings hat, kat and rat:

Regular expression: [hkr]at
Search string: hat
The text "hat" found with start index 0 and end index 3
Search string: kat
The text "kat" found with start index 0 and end index 3
Search string: rat
The text "rat" found with start index 0 and end index 3
Search string: vat
No match found
Search string: it is both hat and kat but not vat
The text "hat" found with start index 11 and end index 14
The text "kat" found with start index 19 and end index 22
Search string:

As another example, the pattern

num[^123]

matches all substrings, which consists of the word num followed by a character which is
not 1, 2 or 3:

Regular expression: num[^123]
Search string: num
No match found
Search string: num1
No match found
Search string: num4
The text "num4" found with start index 0 and end index 4
Search string:

The regular expression

[A-G]

matches all uppercase letters from A to G:

Regular expression: [A-G]
Search string: Anders Andersen
The text "A" found with start index 0 and end index 1
The text "A" found with start index 7 and end index 8
Search string: Harald Hen
No match found
Search string: Harald Gormssøn
The text "G" found with start index 7 and end index 8
Search string:

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

27

Strings

The pattern

[^0-9]

matches any character that is not a digit:

Regular expression: [^0-9]
Search string: abc
The text "a" found with start index 0 and end index 1
The text "b" found with start index 1 and end index 2
The text "c" found with start index 2 and end index 3
Search string: 0x123
The text "x" found with start index 1 and end index 2
Search string: 1234
No match found
Search string:

The following expression is an example of a union that matches all digits and lowercase
letters between a and f:

Regular expression: [0-9[a-f]]
Search string: xya1z
The text "a" found with start index 2 and end index 3
The text "1" found with start index 3 and end index 4
Search string: xyz
No match found
Search string:

Below is an example of an intersection. The goal is to show the syntax, for the regular
expression could instead be writen as [h-n].

Regular expression: [a-n&&[h-u]]
Search string: Preben
The text "n" found with start index 5 and end index 6
Search string: Frede
No match found
Search string:

Some specific character classes can be identified by a symbol:

-- .	 Any character
-- \d	 The 10 digits
-- \D	 All characters that not are a digit

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

28

Strings

28

-- \s	 A whitespace: [\t\n\f\r]
-- \S	 All characters that not are a whitespace
-- \w	 Lettes and digits: [a-zA-Z0-9]
-- \W	 All other characters: [^\w]

Example of a regular expression, which is a dot:

Regular expression: .
Search string: 123
The text "1" found with start index 0 and end index 1
The text "2" found with start index 1 and end index 2
The text "3" found with start index 2 and end index 3
Search string:

Example of a regular expression, which matches a digit:

Regular expression: \d
Search string: ab12cd
The text "1" found with start index 2 and end index 3
The text "2" found with start index 3 and end index 4
Search string:

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

29

Strings

Example of a regular expression, which is a whitespace:

Regular expression: \s
Search string: 1 2 3
The text " " found with start index 1 and end index 2
The text " " found with start index 3 and end index 4
Search string:

There are also some options to specify that a pattern must occur several times and for each
there are even three variants. If X represents a pattern the syntax is

X? X?? X?+ X occurs once or not at all

X* X*? X*+ X occurs several times or possibly not at all

X+ X+? X++ X occurs at least once

X{n} X{n}? X{n}+ X occurs exactly n time

X{n,} X{n,}? X{n,}+ X occurs at least n time

X{n,m} X{n,m}? X{n,m}+ X occurs at least n times and at most m times

In principle, these operators are simple enough, but it is not always so easy to predict
the outcome:

Regular expression: a?
Search string: 123
The text "" found with start index 0 and end index 0
The text "" found with start index 1 and end index 1
The text "" found with start index 2 and end index 2
The text "" found with start index 3 and end index 3
Search string:

a? matches a substring consisting of zero or one character a. If x denotes this pattern, one
can perceive the search string 123 as x1x2x3x, and you will therefore have 4 matches.
Therefore, the following pattern results in 6 matches:

Regular expression: a?
Search string: 1a2a3
The text "" found with start index 0 and end index 0
The text "a" found with start index 1 and end index 2
The text "" found with start index 2 and end index 2
The text "a" found with start index 3 and end index 4
The text "" found with start index 4 and end index 4
The text "" found with start index 5 and end index 5
Search string:

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

30

Strings

a* matches any number of the character a, so you end with 5 matches:

Regulært udtryk: a*
Søgestreng: 12aaaaaaaaaaaa3
Teksten "" fundet med start på indeks 0 og slut på indeks 0
Teksten "" fundet med start på indeks 1 og slut på indeks 1
Teksten "aaaaaaaaaaaa" fundet med start på indeks 2 og slut på indeks 14
Teksten "" fundet med start på indeks 14 og slut på indeks 14
Teksten "" fundet med start på indeks 15 og slut på indeks 15

As a+ requires at least one character a, you below get respectively no and 1 match:

Regular expression: a+
Search string: 123
No match found
Search string: 123aaa45
The text "aaa" found with start index 3 and end index 6
Search string:

The above examples show how the method find() in the class Matcher works. It searches over
again in the search string until it finds a substring that matches the regular expression. If
it finds a match, the index has reached the first character after the string. The next search
will start from that location. Consider again a search similar to the above:

Regular expression: a?
Search string: aaa
The text "a" found with start index 0 and end index 1
The text "a" found with start index 1 and end index 2
The text "a" found with start index 2 and end index 3
The text "" found with start index 3 and end index 3
Search string:

1.	The search starts from the begining, and the index is 0. The search ends when the
index is 1 when the substring “a” matches the regular expression.

2.	Next search stops with the index in place 2, where they have found the next
substring “a” that matches.

3.	The third search finds the substring “a” and stop index of 3.
4.	Finally stops the last search when the end of the string is reached, and at that time

the index is still 3 and you have found the empty string that matches the regular
expression.

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

31

Strings

31

Below is an example that shows a bit of the same, but the first search stops first when the
index is 3:

Regular expression: a*
Search string: aaa
The text "aaa" found with start index 0 and end index 3
The text "" found with start index 3 and end index 3
Search string:

This also applies to the example below, but the last search, which results in the empty string
does not match the regular expression:

Regular expression: a+
Search string: aaa
The text "aaa" found with start index 0 and end index 3
Search string:

The above examples show that you often get a different result than expected. If, for example
you want an expression that matches certain number of characters, the syntax often will be
something like the following:

95,000 km
In the past 5 years we have drilled around

—that’s more than twice around the world.

What will you be?

Who are we?
We are the world’s leading provider of reservoir characterization,
drilling, production, and processing technologies to the oil and
gas industry.

Who are we looking for?
We offer countless opportunities in the following domains:
n Operations
n Research, Engineering, and Manufacturing
n Geoscience and Petrotechnical
n Commercial and Business

We’re looking for high-energy, self-motivated graduates
with vision and integrity to join our team.

careers.slb.com

http://s.bookboon.com/Schlumberger1

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

32

Strings

Regular expression: a{3}
Search string: aaaaa
The text "aaa" found with start index 0 and end index 3
Search string:

If you want to search a group of characters used parentheses, where the following expression
matches sekvenses 123123:

Regular expression: (123){2}
Search string: 891231234512367
The text "123123" found with start index 2 and end index 8
Search string:

As another example, the following pattern matches 3 of the characters a, b and c:

Regular expression: [abc]{3}
Search string: abdbbbeabccbaf
The text "bbb" found with start index 3 and end index 6
The text "abc" found with start index 7 and end index 10
The text "cba" found with start index 10 and end index 13
Search string:

As shown in the table above there are three options for specifying quantifiers. As mentioned
the search in the search string moves the index until a match is found. If the quantifiers in
the first column are used the index is moved as far as possible. A dot means the character
class consisting of all characters, and the pattern

.*abc

therefore means 0 or more characters followed by abc. As the index moved as far to the
right as possible the result of the following search is only in one match:

Regular expression: .*abc
Search string: xabcxxxxxabc
The text "xabcxxxxxabc" found with start index 0 and end index 12
Search string:

If the quantifiers in the second column are used, the search stops as soon as a match is
found. Therefore results the following search two matches:

Regular expression: .*?abc
Search string: xabcxxxxxabc
The text "xabc" found with start index 0 and end index 4
The text "xxxxxabc" found with start index 4 and end index 12
Search string:

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

33

Strings

Finally if the quantifiers in the third column are used, the index is moved as far as possible.
Because .* matches all characters, the index is moved to the end of the string – and past
abc. Therefore, the following search has no match:

Regular expression: .*+abc
Search string: xabcxxxxxabc
No match found
Search string:

There are also some options to specify where in the search string a match must occur:

-- ^	 the start of the line
-- $	 the end of the line
-- \b	 the start of a word
-- \B	 not in the start of a word
-- \A	 the start of the search string
-- \G	 the start of the previous match
-- \z	 the start of the search string

Correspondingly, the following searches results in a single match:

Regular expression: ^abc
Search string: abcabcabc
The text "abc" found with start index 0 and end index 3
Search string:
Regular expression: abc$
Search string: abcabcabc
The text "abc" found with start index 6 and end index 9
Search string:

The above examples demonstrate the basics regarding regular expressions, but there are
several options, and the classes Pattern and Matcher also has other useful methods. Here I
refer to the documentation, and will instead end this introduction to regular expressions
with a few examples.

In Java, the name of a variable start with a letter, and then there should follow any number
of characters consisting of letters, digits and the character _. In addition, it is recommended
that a variable name always starts with a lowercase letter. If one decides that it’s the rules,
a variable is defined by using the following regular expressions:

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

34

Strings

34

private static void test05()
{
 Pattern pattern = Pattern.compile("^[a-z]+[a-zA-Z_0-9]*$");
 for (String str = enter("? "); str.length() > 0; str = enter("? "))
 {
 Matcher matcher = pattern.matcher(str);
 System.out.println(matcher.find());
 }
}

If you executes the method, you can enter strings, and the method will validate where the
string is a valid variable. The pattern says that the string must start with just a small letter:

[a-z]+

Next, the strings must end with any number of characters that are letters, digits or _:

[a-zA-Z_0-9]*$

American online
LIGS University

▶▶ enroll by September 30th, 2014 and

▶▶ save up to 16% on the tuition!

▶▶ pay in 10 installments / 2 years

▶▶ Interactive Online education
▶▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

35

Strings

Similarly, the following method validates whether a string represents a binary number (a
string consisting of 0 and 1):

private static void test06()
{
 Pattern pattern = Pattern.compile("^[01][01]*$");
 for (String str = enter("? "); str.length() > 0; str = enter("? "))
 {
 Matcher matcher = pattern.matcher(str);
 System.out.println(matcher.find());
 }
}

As a complex example is shown a method using a regular expression to validate an email
address. Note that I have already used the method in the book Java 3.

public static boolean isMail(String mail)
{
 return Pattern.compile(
 "^[a-zA-Z0-9.!#$%&'*+/=?^_`{|}~-]+@((\\[[0-9]{1,3}\\.[0-9]{1,3}\\.
 [0-9]{1,3}\\.[0-9]{1,3}\\])|(([a-zA-Z\\-0-9]+\\.)+[a-zA-Z]{2,}))$").
 matcher(mail).matches();
}

It is a very complex expressions, and also it uses rules and operators that I not have highlighted
above, so I will try to explain the expression. It starts with a character class:

[a-zA-Z0-9.!#$%&'*+/=?^_`{|}~-]+

It defines the small and capital letters, digits and a number of other special characters. You
should note that when a special character is defined in a character class, it is unnecessary
to escape them with a backslash. The exception is [,] and – because these characters are
used to define the class. An email address consists of two parts separated by the @ character,
as we call respectively the first name and the last name. The above character class defines
thus what characters the first name may consist of, and that there must be at least one of
these characters. You should note that the class allows many other characters than what is
usual in mail addresses, but they are actually legal – at least if you includes mail addresses
from all countries.

After the above character class follows the separator @, and then the last name that is
made up of two terms, so that a string should match the one or the other. You define this
selection with the character |, and the first expression is therefore:

(\\[[0-9]{1,3}\\.[0-9]{1,3}\\.[0-9]{1,3}\\.[0-9]{1,3}\\])

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

36

Strings

The expression matches a bracket begin, four integer of at least 1 and no more than 3 digits
separated of a dot, and last a final bracket. This means that the expression matches an IP
address in brackets.

The second expression has the form:

(([a-zA-Z\\-0-9]+\\.)+[a-zA-Z]{2,})

Here is

[a-zA-Z\\-0-9]+

a character class that matches uppercase and lowercase letters, a hyphen and digits, and
there must be at least one of these characters. Next, follow a dot. Of these groups must
be at least one:

([a-zA-Z\\-0-9]+\\.)+

Finally there must be at least two letters. The result is that the last name is either an IP
address or a server name. The entire expression is surrounded by the characters ^ and $,
which means that there must be no front or behind the expression.

EXERCISE 2

In this exercise, you should extends the class library PaLib. Add the method isMail() to
the class Str. You must also add the following methods when they should be implemented
using a regular expression:

/**
 * Validates where a string is hexadecimal integer without sign, when the syntax
 * should be that of Java, where the numbers starts with 0x.
 * @param str The string to be validated
 * @return true, if str represents hexadecimal integer without sign
 */
public static boolean isHex(String str) { … }

/**
 * Validates whether a string is a long when the number must either be 0, or an
 * integer which may have a sign and must not start with 0, but otherwise
 * have maximum 17 digits.
 * @param str The string to be validated
 * @return true, if str represents a long
 */
public static boolean isLong(String str) { … }

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

37

Strings

37

/**
 * Validates where a string is a double when the number may start with a sign and
 * there must be a decimal point followed by at least one digit. Moreover, it
 * should be possible to end the number with a eksponent part.
 * @param str The string to be validated
 * @return true, if str represents a double
 */
public static boolean isDouble(String str) { … }

Also, write a test program RegProgram that can test the new methods in the class library.

 .

http://s.bookboon.com/AlcatelLucent

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

38

Inner classes

4	 INNER CLASSES

In Java, you can use nested classes that are classes within classes, and you can in fact can even
define a class inside a method. In most cases defines a class a thing or a concept concerning
the program’s problem area, and all that is said about classes into this place still apply, but
sometimes you need small classes only to be used internally in a another class, and in such
cases you can define an inner class. Seen from the finished program it plays no role, and
the program is no more or less effective for that, but you get a better encapsulation, which
in turn can result in code that is easier to read and understand.

It sounds simple to define inner classes, and it also is, but there is nevertheless a lot of
details that you needs to know, and that’s what this chapter covers. Basically, you can define
classes as follows:

class OuterClass
{
 …
 static class NestedClass
 {
 …
 }
 class InnerClass
 {
 …
 }
}

where the class OuterClass has two inner classes. The difference is that one is static, while
the other is not. A static inner classes are usually called a nested class, while a non static is
called an inner class. An inner class can refer to all in the outer class regardless of whether
it is private or not. A nested, in turn, can not refer to the instance variables or non-static
methods in the outer class, unless it has an object. Similar to other static members in a
class, references to a nested class must be done via the name of the outer class, for example
something like the following:

OuterClass.NestedClass obj = new OuterClass.NestedClass();

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

39

Inner classes

An inner class is in the same way as other members of the outer class associated with an
object of the outer class, and this means, that an inner class can not have static members.
Stated slightly differently, objects that are instances of an inner class, only exists in an
instance of the outer class. If outer is an object of type OuterClass, you can create an object
of the type InnerClass as follows:

OuterClass.InnerClass obj = outer.new InnerClass();

Consider the following class OuterClass:

class OuterClass
{
 public int x = 0;

 class InnerClass
 {
 public int x = 1;

 void print(int x)
 {
 System.out.println("x = " + x);
 System.out.println("this.x = " + this.x);
 System.out.println("OuterClass.this.x = " + OuterClass.this.x);
 }
 }
}

that defines an inner class called InnerClass. Both OuterClass and InnerClass has a variable
called x, and because the two variables has the same name they can shade for each other.
The class InnerClass has a method called print(), and it has a parameter, that is also called
x. When the method refers to x (the first statement), it is the parameter that is referred to.
When writing this.x (the second statement) it is as mentioned earlier the instance variable
that is referenced, and that is the instance variable in the class InnerClass. If you writes
OuterClass.this.x (the third statement) is the instance variable in the class OuterClass that it
is refered. Performing the following method:

private static void test()
{
 OuterClass outer = new OuterClass();
 OuterClass.InnerClass inner = outer.new InnerClass();
 inner.print(23);
}

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

40

Inner classes

40

you get the result:

x = 23
this.x = 1
OuterClass.this.x = 0

The same convention for solution of problems with the same names are used if there instead
of a variable is a method.

4.1	 ITERATORS

If you have an ArrayList:

ArrayList<Integer> list = new ArrayList();

you can iterate over the elements in the list as follows:

for (Integer t : list) System.out.println(t);

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 �33rd place Financial Times worldwide ranking: MSc
International Business

•	 1st place: MSc International Business
•	 1st place: MSc Financial Economics
•	 2nd place: MSc Management of Learning
•	 2nd place: MSc Economics
•	 �2nd place: MSc Econometrics and Operations Research
•	 �2nd place: MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

41

Inner classes

I have previously mentioned the iterator pattern, and the above statement is legal because
the class ArrayList implements this pattern, and thus the class implements the interface
Iterable<Integer>, which defines a principle of how to traverse a collection. In fact, the above
statement is translated to something like the following:

for (Iterator<Integer> itr = list.iterator(); itr.hasNext();)
 System.out.println(itr.next());

which is an ordinary for statement. I would later treat the iterator pattern in details and
including how it is implemented, but as an example of the use of inner classes I will below
shows a simple class that represents the primes:

package primeprogram;

import java.util.*;

public class Primes implements Iterable<Long>
{
 private long p = 2;
 private long m;

 public Primes(long m)
 {
 this.m = m;
 }

 public Iterator<Long> iterator()
 {
 p = 2;
 return new PrimeIterator();
 }

 private class PrimeIterator implements Iterator<Long>
 {
 public boolean hasNext()
 {
 return p <= m;
 }

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

42

Inner classes

 public Long next()
 {
 long t = p;
 if (p == 2) p = 3; else for (p += 2; !isPrime(p); p += 2);
 return t;
 }
 }

 public static boolean isPrime(long n)
 {
 if (n == 2 || n == 3 || n == 5 || n == 7) return true;
 if (n < 11 || n % 2 == 0) return false;
 for (long t = 3, m = (int)Math.sqrt(n) + 1; t <= m; t += 2) if (n % t == 0)
 return false;
 return true;
 }
}

When you create an instance of the class, you specify a positive integer, and the object
represent all primes less than or equal to this number. The class makes it possible to iterate
the prime numbers that it represents. That is you can write something like the following:

Primes primes = new Primes(100);
for (long p : primes) System.out.print(p + " ");
System.out.println();

The class implements the interface Iterable<Long>, which means that the class must have
a method called iterator(), which returns an object of the type Iterator<Long>. An iterator
is an object that can refer to a particular item in a collection (and here in Primes), and
has two methods where hasNext() tests whether you have reached the end while the next()
returns the item that the iterator indicate and at the same time moves the iterator forward.
Iterator<Long> is an interface, and you has to write a class that implements this interface.
This class will be used to instantiate an object that is an internal property of the class Primes
and the class is written as a inner class called PrimeIterator. Note that the class is private
so it is only known inside the class Primes.

The class Primes have two instance variables, the first p is the prime, as currently is reached,
while the other m is the upper limit of the primes, the class should represent. When
PrimeIterator is an inner class, it can refer to these variables, and the implementation of
the class is quite trivial. The class Primes implements the method iterator() – defined by
the interface Iterable<Long> – and it sets the start of the primes to 2 and returns an object
of the type PrimeIterator.

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

43

Inner classes

43

The most important class is the inner PrimeIterator and as a typical application of an inner
class, but it is also an example of how to implement the iterator pattern with a custom iterator.

As can be seen from the above example, an inner class can be private, and can also be both
public and protected, and the meaning is the same as that for other members of a class.

It is also possible to define a class in a method:

private static void test()
{
 int[] arr = { 2, 3, 5, 7, 11, 13, 17, 19 };

 class Counter
 {
 private int n = 0;

 public int value()
 {
 int t = n;
 n = (n + 1) % arr.length;
 return t;
 }

http://s.bookboon.com/BI

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

44

Inner classes

 }

 Counter c = new Counter();
 for (int i = 0; i < 10; ++i) System.out.print(arr[c.value()] + " ");
 System.out.println();
}

Such a class is called a local class and Counter above is an example. In this case there is no
good reason for the local class, but you should note that the local class can refer to local
variables in the method by which it is a part. You will also notice that the class must be
defined before it can be instantiated.

Consider then the following class that defines an iterator which iterates over the factorials:

package factorials;

import java.util.*;

public class Factorial implements Iterable<Long>
{
 public Iterator<Long> iterator()
 {
 return new Iterator<Long>()
 {
 private long t = 1;
 private int i = 0;

 public boolean hasNext()
 {
 return i < 20;
 }

 public Long next()
 {
 return t *= ++i;
 }
 };
 }
}

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

45

Inner classes

The class is called Factorial and implements the interface Iterable<Long>. It must, therefore,
in the same manner as the class Primes implement the method iterator(), and in this case,
the class has no other members. The method iterator() must return an object of the type
Iterator<Long> and hence I has to writte a class that implements this interface. The class
does not have to be known outside the method iterator(), and can therefore be written as
an anonymous class, namely a class which has no name. You should note the syntax:

return new Iterator<Long>()
{
}

and an anonymous class must be defined on the basis of an interface or a class that it
inherits. With the class Factorial defined you can write a statement like:

for (long t : new Factorial()) System.out.println(t);

There are many examples of the use of anonymous classes, for example the class Primes, that
could be written as follows, wherein the iterator is now implemented as an anonymous class:

package primeprogram;

import java.util.*;

public class Primes implements Iterable<Long>
{
 private long m;

 public Primes(long m)
 {
 this.m = m;
 }
 public Iterator<Long> iterator()
 {
 return new Iterator<Long>()
 {
 long p = 2;

 public boolean hasNext()
 {
 return p <= m;
 }

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

46

Inner classes

46

 public Long next()
 {
 long t = p;
 if (p == 2) p = 3; else for (p += 2; !isPrime(p); p += 2);
 return t;
 }
 };
 }

 public static boolean isPrime(long n)
 {
 if (n == 2 || n == 3 || n == 5 || n == 7) return true;
 if (n < 11 || n % 2 == 0) return false;
 for (long t = 3, m = (int)Math.sqrt(n) + 1; t <= m; t += 2) if (n % t == 0)
 return false;
 return true;
 }
}

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

47

Inner classes

EXERCISE 3

Write a program similar to the program Factorials when the program this time should
implements a class Fibonacci, where you can iterate through the fibonacci numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, …

The class Fibonacci must implement the interface Iterable<Long> and should only have a
single method that returns the iterator, and the main program should only print the fibonacci
numbers. The iterator must as in the class Factorial be implemented as an anonymous class.
Note that the largest fibonacci number that you can represent as a long is the number with
index 89.

EXERCISE 4

Write a program called CounterProgram, that opens the follewing window:

The program must have a very simple class named Counter. The class should have an instance
variable of the type int, that from start is 0. The class must have three methods:

-- up(), that increments the counter by 1
-- down(), that decrements the counter by 1
-- getValue(), that returns the value of the counter

Center in the window is a label, that shows the value of the counter. When the user click
on the button Up, the counter should be increased, and when the user click on Down
the counter should be decreased. The event handler to one of the two buttons must be
written as an inner class, and the event handler to the other button must be written as an
anonymous class.

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

48

Inner classes

4.2	 EXAMPLE: ZIPCODES

I will show an example of a program where you can search the Danish ZIP codes. The user
can enter a value for the ZIP code and a value for the city name, and the program will
then find the elements that matches these values, when the zipcode code must start with
the entered value, while the city name must contain the entered value. When comparing the
city names, it should not be case-sensitive. I start with a simple model class for a zip code:

package postprogram;

public class Post
{
 private String code; // the zip code
 private String city; // name og the town

 public Post(String code, String city)
 {
 this.code = code;
 this.city = city;
 }

 public String getCode()
 {
 return code;
 }

 public String getCity()
 {
 return city;
 }

 public String toString()
 {
 return code + " " + city;
 }
}

Next there is written a class Postcodes, that is an encapsulation of an ArrayList<Post>. There
are two challenges associated with this class:

1.	 the arraylist must be initialized with Post objects
2.	 the class should have two iterators to iterates the list sorted respectively by zip

code or city name

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

49

Inner classes

49

T﻿he first problem is solved by placing a table directly in the code. It is obviously not a very
flexible solution, but postcodes does not change frequently, so in this case the solution can
be accepted. In the program, post codes are laid out as an array in a nested class. The class
is also public, so others can refer to it. Below is a part of the class:

public static class Data
{
 private final String[][] table = {
 { "1000", "København K" },
 { "1001", "København K" },
 { "1002", "København K" },
 ….
 { "9982", "Ålbæk" },
 { "9990", "Skagen" }
 };

 public int length()
 {
 return table.length;
 }

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

50

Inner classes

 public String getCode(int n)
 {
 return table[n][0];
 }

 public String getCity(int n)
 {
 return table[n][1];
 }
}

T﻿he constructor of the class Postcodes uses the class Data to initialize an ArrayList<Post>
with Post objects.

T﻿he second of the above problems are solved by sorting the ArrayList. To sort an array list
and for that matter any other list of objects, you should be able to compare the objects and
to determine whether an object is greater than another object. It can be solved in several
ways, and one way is to specify a comparator, which is an object whose class implements
(in this case) the interface Comparator<Post>. It defines a single method

public int compare(Post p1, Post p2)
{
}

which must return -1 if p1 is less than p2, 1 if the p1 is greater than p2 and 0 if they are
the same. The class is now written, so it has two iterators that starts to sort the post codes
by respectively zipcode and city name and the sort order is defined by two inner classes:

package postprogram;

import java.util.*;

public class Postcodes implements Iterable<Post>
{
 private ArrayList<Post> list = new ArrayList();

 public Postcodes()
 {
 Data data = new Data();
 for (int i = 0; i < data.length(); ++i)
 list.add(new Post(data.getCode(i), data.getCity(i)));
 }

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

51

Inner classes

 public Iterator<Post> iterator()
 {
 list.sort(new CodeCompare());
 return list.iterator();
 }

 public Iterator<Post> iterator2()
 {
 list.sort(new CityCompare());
 return list.iterator();
 }

 class CodeCompare implements Comparator<Post>
 {
 public int compare(Post p1, Post p2)
 {
 return p1.getCode().compareTo(p2.getCode());
 }
 }

 class CityCompare implements Comparator<Post>
 {
 public int compare(Post p1, Post p2)
 {
 return p1.getCity().compareTo(p2.getCity());
 }
 }

 public static class Data
 {
 ….
 }
}

Note first that the class implements the iterator pattern in the usual way. Next, note the
two inner classes, each of which defines a comparator. In this case, it is easy to define the
comparison, since in either case you should compare strings, and the class String supports
directly comparison. If you consider the implementation of the method iterator(), so it starts
to sort the ArrayList after zip code, which is done using a method sort() and a comparator
object. The class has a different method, which also returns an iterator. It’s called iterator2()
and works in exactly the same way, just it sorts with a second comparator.

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

52

Inner classes

52

T﻿he above classes can be seen as the model for the program, a model which makes the data
available which the program must use. In this case, the program should select some of the
objects from the model based on a given search criteria for respectively the zip code and
the city name. To this end, I have written a Controller class:

public class Controller
{
 private Postcodes model = new Postcodes();

 public ArrayList<Post> seek(String code, String city, boolean zipcode)
 {
 ArrayList<Post> list = new ArrayList();
 city = city.toLowerCase();
 if (zipcode)
 {
 for (Post p : model)
 if (p.getCode().startsWith(code) &&
 p.getCity().toLowerCase().contains(city)) list.add(p);
 }
 else
 {

http://s.bookboon.com/volvo

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

53

Inner classes

 for (Iterator<Post> itr = model.iterator2(); itr.hasNext();)
 {
 Post p = itr.next();
 if (p.getCode().startsWith(code) &&
 p.getCity().toLowerCase().contains(city)) list.add(p);
 }
 }
 return list;
 }
}

T﻿he class creates the model, but otherwise there is only one method to searching. The
method has three parameters, where the first two is the search text, respectively for the zip
code and the city name. The last parameter specifies whether the results must be sorted by
zip code or city name. If the result should be sorted by zip code the standard iterator is
used by iterating through the model with the usual syntax:

for (Post p : model)

Should the result be sorted by city name, iterator2() is used and this time you can not use
the expanded for statement, but must directly refer to the iterator:

for (Iterator<Postnummer> itr = model.iterator2(); itr.hasNext();)

Now there’s just to give the program a user interface and run the program, you get the
following window, where there has been a search:

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

54

Enumerations

5	 ENUMERATIONS

As shown, you can define constants as variables that are static final. An alternative is to use
a so-called enumeration, and an example might be:

package enumerations;
public enum
 WeekDays { MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY, SATURDAY, SUNDAY }

Weekdays is a reference type that defines seven values and as an example you can write the
following method:

private static void test01()
{
 String[] days =
 { "MONDAY", "TUESDAY", "WEDNESDAY", "THURSDAY", "FRIDAY", "SATURDAY", "SUNDAY" };
 try
 {
 System.out.println(weekday(rand.nextInt(7) + 1));
 System.out.println(weekday(days[rand.nextInt(7)]));
 for (WeekDays day : WeekDays.values()) System.out.println(day);
 System.out.println(WeekDays.WEDNESDAY.compareTo(WeekDays.MONDAY));
 System.out.println(WeekDays.WEDNESDAY.compareTo(WeekDays.FRIDAY));
 System.out.println(WeekDays.WEDNESDAY.compareTo(WeekDays.WEDNESDAY));
 }
 catch (Exception ex)
 {
 System.out.println(ex.getMessage());
 }
}

private static WeekDays weekday(int n) throws Exception
{
 switch (n)
 {
 case 1: return WeekDays.MONDAY;
 case 2: return WeekDays.TUESDAY;
 case 3: return WeekDays.WEDNESDAY;
 case 4: return WeekDays.THURSDAY;
 case 5: return WeekDays.FRIDAY;
 case 6: return WeekDays.SATURDAY;
 case 7: return WeekDays.SUNDAY;
 }
 throw new Exception("Illegal day");
}

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

55

Enumerations

55

private static WeekDays weekday(String s) throws Exception
{
 return WeekDays.valueOf(s);
}

The example should only show the syntax. The first weekday() method has an int as a
parameter and converts it to a value of type Weekdays. You should note, how to refer to
the individual values with the dot operator, and you should note that the methood’s type is
Weekdays. The second weekday() method, has a string as a parameter and returns a Weekdays
value that matches this string. The two methods are used by the test method. Here you
should specifically note that it is possible to loop over an enumeration. You should also note
that an enum is comparable and that the order is determined by the order of the values.

Enumerations can help to improve the readability of programs, and it is recommended to
use enumerations if a program needs a finite number of values, which are values that do
not change. Good examples are week days, month names, colors of playing cards, etc.

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

56

Enumerations

In Java an enum is a little more than just a list of constant values and actually an enum is
a class. Consider as an example the following enum (where I have not shown all values):

package enumerations;

public enum Kings
{
 GOR (936, 958, "Gorm den Gamle"),
 HA1 (958, 987, "Harald Blåtand"),
 SV1 (987, 1014, "Svend Tveskæg"),
 …
 MA2 (1972, 9999, "Margrethem 2."),
 NON (0, 0, "Interregnum");

 private final int from;
 private final int to;
 private final String name;

 private Kings(int from, int to, String name)
 {
 this.from = from;
 this.to = to;
 this.name = name;
 }

 public int getFrom()
 {
 return from;
 }

 public int getTo()
 {
 return to;
 }

 public String getName()
 {
 return name;
 }

 public String toString()
 {
 return "[" + name() + "] " + name;
 }

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

57

Enumerations

 public static Kings getKing(int year)
 {
 for (Kings k : Kings.values()) if (k.from <= year && k.to >= year) return k;
 return Kings.NON;
 }

 public static ArrayList<Kings> getKings(String name)
 {
 name = name.toLowerCase();
 ArrayList<Kings> list = new ArrayList();
 for (Kings k : Kings.values()) if (k.name.toLowerCase().contains(name))
 list.add(k);
 return list;
 }
}

The example should show that it is possible to assign arguments or attributes to the individual
values. Each value is this time a name of three characters, which is a key for a Danish king.
For each value is associated three arguments respectively start and end year of the king’s
reign and the king’s name (or the queen’s name). The argument is written after the value,
and there must be a corresponding private constructor that initializes the constants with
the current arguments. In addition the type may have methods, and in this case there are
get methods to the three arguments, a toString() method, a method which can return the
reign for a specific year, as well as a search method. Below is shown a test method using
the type Kings

private static void test02()
{
 for (Konge konge : Konge.values()) print(konge);
 System.out.println("---");
 print(Konge.getKonge(1200));
 System.out.println("---");
 for (Konge konge : Konge.getKonger("Frede")) print(konge);
}

private static void print(Konge konge)
{
 if (!konge.equals(Konge.NON))
 System.out.println(
 konge.getNavn() + ", " + konge.getFra() + " – " + konge.getTil());
}

There is not much to explain, but you should note that the type’s methods are used as
methods in other classes.

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

58

Enumerations

58

EXERCISE 5

Write a program that you can call MonthProgram. Add an enumeration named Months to
the program when the type must represent the months as an enumeration, and when for
each month must be attached an argument that shows the number of days in the month.

The type must beyond a get method for the number of days have a static method that returns
the number of days in the year when the method has to be implemented with a loop that
determines the number of days by iterating over the values of Mounts.

There must also be a toString(), that returns a string with the name of the month and the
number of days in brackets.

Write a test method – the main() method – which just prints the number of days in the year.

There is a particular problem with initializing February correct. Here you should remember
the class GregorianCalendar.

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

59

Enumerations

PROBLEM 2

In this task, you must write a program that simulates that four players are playing poker. If
you do not know the rules of poker, they are simple and are explained below. The purpose
is to show examples of the use of enumerations, and it is recommended that you follow the
procedure below. The program is intended as a vary simplified poker program.

The program must operate in the following manner. There are four players, one of which is
the user, while the three others are virtual players. When starting a new game, each player
is dealt 5 cards. The user can see his own cards but not the three others. An example of
the program’s window is:

After the players has there 5 cards, each player has the opportunity to exchange cards
(possibly none or all cards), and once they have done it, you can view the cards and the
program tells you who has won. You can then choose a new game, and in the middle the
program shows, how many games you have played and how many the you have won.

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

60

Enumerations

The program’s main shortcomings (restrictions) are as listed below:

1.	There is nothing in deposits, and it makes it very uninteresting to play, as it is the
whole idea of poker, and the ability to bluff falls thus also away.

2.	The rules as the three virtual players use to exchange cards is very simple and static.
3.	There are always four players, which should be more dynamic.
4.	There is always played with 52 cards.

In addition, the user interface is simple. The task has these limitations to make the program
simple. In fact, it is quite complex two solve the first two of the above constraints in a
good way. I will later returns to the task and look at a new version of the program that do
not to have the same restrictions, but in this place you has to focus on types and especially
enumerations and write the program as described below.

In poker each player is dealt 5 cards, and the player that finally (after players have exchanged
cards) has the highest value, has won the game. The values are with decreasing value
downwards (where an ace is always the highest card):

-- straight flush, where you have five subsequent cards of the same color, that is, for
example eight, nine, ten, jack and queen in the same color

-- four of a kind where you have four cards of the same value, that is, for example
four kings

-- full house, where you have a pair and three of a kind, for example two jacks and
three fours

-- flush, where you have five cards of the same color
-- straight, where you have five subsequent cards, but not necessarily in the same color
-- three of a kind where you have three cards with the same value, for example three

sixes, but the last two cards are different and does not have the value six
-- two pairs that is, for example two threes and two aces, while the last card is not

three or an ace
-- a pair where there are two cards with the same values such as two jacks, while the

last three cards are not a jack, not three of a kind or contains a pair
-- high card, where none of the above values occur

In the case that two players have the same value, the card with the highest value is determining,
and are they the same (as an example two players with a pair), it is the value of the first
card, where the two players’ cards are different which determines the order.

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

61

Enumerations

61

Use the following procedure to write the program:

1)

Create a project that you can call CardProgram. Create a package cardprogram.images and
copy the images of the cards to this package. The cards can be found in the file cards.tar.gz.

Add a class called MainView when it should be the program’s main window and write so
much code that the constructor opens a (so far empty) window. Creates an object of the class
in main() and run the program, the result must be that the program opens a blank window.

2)

Add the following types to the project, representing respectively the color and the value of
a playing card:

package cardprogram;

public enum Color { DIAMOND, HEART, SPADE, CLUBS }

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

62

Enumerations

package cardprogram;

public enum Value
{ TWWO, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE, TEN, JACK, QUEEN, KING, ACE }

Note that the last type where the values are sorted, and an Ace has the highest value, what
is the case in poker.

3)

Add a class representing a playing card, when the class should have two instance variables
of the type Color and Value and when a playing cards must be Comparable:

package cardprogram;

/**
 * Represents a playing card by a color and a value.
 */
public class Card implements Comparable<Card>
{
 private Color color;
 private Value value;

 …

}

The class must override equals(), then two cards are equal if they have the same color and
same value, and where two cards should be sorted only by their value.

Next, write a class Cards that represents a deck of 52 cards, and where the constructor
creates the 52 Card objects:

package cardprogram;

import java.util.*;

public class Cards
{
 …

 public Cards() { }

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

63

Enumerations

 public boolean empty() { }

 public Kort deal() throws Exception { }

 public void shuffle() { }
}

The class is little more than an array of 52 cards. The class must have two important methods:

1.	 shuffle(), which shuffles the cards in random order.
2.	deal(), which take the top card from the deck and is used to provide a player a card.

4)

Add a type that defines the size of a poker hand:

package cardprogram;
public enum Rank { HEIGHT_CARD, ONE_PIAR, TWO_PAIR, THREE_OF_A_KIND,
 STRAIGHT, FLUSH, FULL_HOUSE, FOUR_OF_A_KIND, STRAIGHTFLUSH }

where the order defines the size of a poker hand.

Add a class that defines a poker hand:

package cardprogram;

import java.util.*;

public class Hand implements Comparable<Hand>
{
 private Card[] arr = new Card[5]; // the cards
 private CardValues value; // represents the value of the hand

 /**
 * Creates a hand by taking 5 cards from the deck.
 * The 5 cards are arranged in increasing order of the cards value.
 * Then the value of the hand is determined and stored in the variable value.
 * @param cards The deck
 * @throws Exception If the deck does not contains 5 cards
 */
 public Hand(Cards cards) throws Exception {}

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

64

Enumerations

64

 public Card getCard(int n) {}

 /**
 * Exchange cards (choose new cards for some of the cards).
 * After the cards are exchanged the hand's value is determined again.
 * @param cards The deck
 * @param selected Array indicating which cards (places) to be exchanged
 * @return true, if the deck enough cards and all wanted cards are exchanged
 */
 public boolean exchange(Cards cards, boolean[] selected) {}

 /**
 * @return The rank of the hand
 */
 public Rank getRank() {}
 /**
 * Returns a string consisting of the hand's rank and cards
 * @return This hand represented as a string
 */
 public String toString() {}

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

65

Enumerations

 /**
 * If the current object and the parameter are of different rank the
 * comparison is trivial.
 * Otherwise, it is the values of the cards, that determines the result.
 * @param haand The hand that compares with
 * @return -1 (<), 1 (>) or 0 (==)
 */
 public int compareTo(Hand hand) {}

 // Inner class to the value of a hand.
 private class CardValues
 {
 // the cards that are needed to compare two hands in the case that they have
 // the same rank
 private Value[] value;
 private Rank rank; // hand rank

 public CardValues(Rank rank, Value … value)
 {
 this.value = value;
 this.rank = rank;
 }

 public Value getValue(int n)
 {
 return value[n];
 }

 public Rank getRank()
 {
 return rank;
 }
 }
}

The class has an inner class called CardValues, which represents the value of a hand. The
class has two variables, which partly indicates the hand’s rank, and the values that should
be used to compare two hands. These values must be used to determine the hand’s value
in the case that two players has a hand of the same rank.

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

66

Enumerations

5)

Write a class Player, which represents a player with a name and a hand:

package cardprogram;

public class Player implements Comparable<Player>
{
 private String name;
 private Hand hand = null;

 public Player(String name) {}

 public String getName() {}
 /**
 * @return The player's rank
 * @throws Exception If the player has not yet been dealt cards
 */
 public Rank getRank() throws Exception {}

 public Hand getHand() throws Exception {}

 /**
 * The user want to exchange cards
 * @param cards Deck of cards
 * @param selected Indicates which cards are to be exchange
 */
 public void exhange(Cards cards, boolean[] selected) {}

 /**
 * A player other than the user want to exchange cards.
 * The method select which cards to exchange.
 * @param cards Deck of cards
 */
 public void exchange(Cards cards) {}

 /**
 * Giving the player a hand of 5 cards
 * @param cards The deck of cards
 * @throws Exception If the deck not has 5 cards
 */
 public void deal(Cards cards) throws Exception {}

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

67

Enumerations

67

 /**
 * Comparing the cards for two players in relation to the rules of poker.
 * The comparison ensure that players are arranged in descending order of value
 * of cards
 * @param player The player to compares with
 * @return 1 (hand > player.hand) -1 (hand < player.haand) otherwise 0
 */
 public int compareTo(Player player) {}

 // Two players are equal if they have the same name.
 public boolean equals(Object obj) {}
}

6)

Write a class Poker representing a number of players who are playing poker:

package cardprogram;

/**
 * Class which represents a number of players who are playing poker.
 */

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

68

Enumerations

public class Poker
{
 private Cards cards = new Cards();
 private Player[] players;

 /**
 * Creates a poker game with a deck of cards and a number of players.
 * @param players The players participating in the game.
 */
 public Poker(Player … players) {}

 /**
 * Starts a new game by shuffle the deck of cards and all players gets
 * there cards.
 * @throws Exception If there are not enough cards to all players.
 */
 public void deal() throws Exception {}

 /**
 * @return Number of players
 */
 public int size() {}

 /**
 * The player with index n.
 * @param n Index
 * @return The player with index n
 */
 public Player getPlayer(int n) {}

 /**
 * Exchange cards for the n-th player.
 * @param n Index for the player to exchange cards
 * @param selected Specifies which card (places) to be exhanged
 */
 public void exchange(int n, boolean[] selected) {}

 /**
 * Exchange cards for the n-th player.
 * @param n Index for the player to exchange cards
 */
 public void exchange(int n) {}

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

69

Enumerations

 /**
 * Determines which player has won and then the player who has the highest cards.
 * @return The player who has won
 */
 public Player won() {}
}

It’s a simple class, and the most important method is the last, which returns the player
who has won.

7)

Add the following type to keep track of who is who:

package cardprogram;
/**
 * Represents four players as their position at the table.
 */
public enum Orientation { NORTH, SOUTH, WEST, EAST }

Add a controller class that must keep track of how many games are played and how many
the user has won, and treat events from the three buttons in the user interface:

1.	 exchange cards
2.	find the winner
3.	new game

With this class in place all that remains is to write the code to the application’s MainView.

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

70

Exception handling

70

6	 EXCEPTION HANDLING

In the preceding examples, both in this and the previous books I have used exception handling.
In principle, it is quite simple, but still are a few more things you should know about.

In practice it is often that a method of one reason or another can not perform the desired
operation, for example because the parameters have illegal values, or otherwise an error
occurs when the method is performed. When the method acknowledges the error, it may
of course cancel the action, but it must also make the calling code aware that there is an
error. This can be achieved by let the method raises an exception, or it can be done with
a return value. The last was formerly a widely used method for handling these kinds of
errors, and the way has both its applications and limitations, so I will start there. I will use
the project Students from the previous book, where I will introduce some changes in order
to better error handling.

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

71

Exception handling

I have extended the class Student with a method that deletes a course, and the method is
defined in the interface IStudent as follows:

/**
 * Deletes a course which a student is enrolled or have completed.
 * @param course The course to be deleted
 * @return true, if the course was deleted and false otherwise
 */
public boolean remove(ICourse course);

A course can obviously only be dropped if the student have the course in question. The
method can fail, and if so, the calling code has to be notified. It could be solved by changing
the method so it raises an exception, but here the method instead returns a value (true
or false) indicating whether the method is performed correctly or not. The method must
therefore have a return value, which tells the users how it was accomplished. In this case,
it is simple to implement the method as the class ArrayList work the same way:

public boolean remove(ICourse course)
{
 return courses.remove(course);
}

A prerequisite for the method works is, moreover, that the class Course overload equals()
with value semantics, and this is not the case and you have to implements equals() in the
class Course:

public boolean equals(Object obj)
{
 if (obj == null) return false;
 if (getClass() == obj.getClass())
 return getId().toUpperCase().equals(((Course)obj).getId().toUpperCase());
 return false;
}

The use of the return values as an indication of whether a method was properly performed
is an excellent solution and has the advantage that it is not necessary to encapsulate the
called code in a try/catch. However, it also has its limitations or drawbacks, if the method
returns a value. Where appropriate, the return value may be incorrectly interpreted as a
result of a return value rather than an error code. Another problem is that the user can
simply ignore the return value, and do not test it.

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

72

Exception handling

The class Course has a method that returns the score that a student has achieved in the
subject:

public int getScore() throws Exception
{
 if (score == Integer.MIN_VALUE)
 throw new Exception("The student has not completed the course");
 return score;
}

If the students do not yet have a score the method raises an exception. That a student has
not received a score is known by the variable of score that has the value Integer.MIN_VALUE
(which is -2147483648), and it is unlikely to be a legal score. The method could, therefore,
simpler be written as follows:

public int getScore()
{
 return score;
}

where the value -2147483648 then has to be interpreted as an error code, and it would
mean that the method could be used without having to be placed in a try/catch. On the
other hand, you would as a mistake could be using the error code as a score, with the
result that a calculation could be wrong. Another consequence would be that the user in
most cases has to test the value and examine whether it is an error code or a legal score.
In this case, I prefer to keep the method as it is, and let it raise an exception if there has
not yet been assigned a score.

If you have a method that returns an object as such the following method from the class
Student

public ICourse getCourses(String id) throws Exception
{
 for (ICourse c : courses) if (c.getId().equals(id)) return c;
 throw new Exception("Course not found");
}

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

73

Exception handling

73

it can raise an exception, because the students do not necessarily have a course with the
current id. Sometimes, and perhaps even quite often you see this problem solved by the
method in the case that there is no course returns null:

public ICourse getCourses(String id)
{
 for (ICourse c : courses) if (c.getId().equals(id)) return c;
 return null;
}

This solution is used very often, when it is clear that null means an error or indicate that
something was not found, but here too there is a risk that the return value could be used
as an object when it was null, and the result would be a NullPointerException.

The conclusion is that the use of return values as error messages has its uses, but in most
cases it is better to let the method raise an exception.

http://s.bookboon.com/IE

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

74

Exception handling

6.1	 CHECKED EXCEPTIONS

The principle in exception handling is that a method can fail, and if so, it raises an exception,
which means that the method immediately is interrupted with a message to the method
that called it. Called a method that can raise an exception, the calling code must handle
this exception, which typically consists of encapsulating the method call in a try/catch.
Otherwise, the calling code is sending an exception further up in the hierarchy of calling
methods. The idea is that the method that can raise an exception can see that something is
wrong, but the method can not know how the error should be handled. It can, however,
send an exception to the calling code in the hope that it knows how the error should be
handled, and does it not that, it can forward the message up in method hierarchy.

Above, I have everywhere let methods raise an exception of the type Exception, and although
it works, it’s not the idea. Javas own classes raises many exceptions and they have types that
tell us something about what is the reason for the exception. These exception types are all
directly or indirectly derived from the class Exception, and although one probably can use
some of these types of exceptions, it is typical that you in the context of an application
defines its own exception types. The reason is partly that in this way you can classify the
various exceptions and treat them differently but also that you get the chance to send values
to the calling code.

In the project concerning students I have added the following class:

package students;

public class StudentsException extends Exception
{
 public StudentsException(String message)
 {
 super(message);
 }
}

It is an exception type for exceptions for this program. You should note that the class
does not add anything new, and its sole purpose is to characterize the exceptions raised
by methods of the program’s classes. In this way, these exceptions are distinguished from
exceptions raised by Java’s classes. I also added the following exceptiontype which defines
the exceptions to the class Subject:

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

75

Exception handling

package students;

class SubjectException extends StudentsException
{
 private String field;

 public SubjectException(String message, String field)
 {
 super(message);
 this.field = field;
 }

 public String getField()
 {
 return field;
 }
}

The class Subject raises an exception if one of its fields are assigned an illegal value. Therefore
extends this class StudentsException with a variable that indicates which field that is illegal.
Also note that the class is written in the same file as StudentsException and thus has package
visibility. It was chosen because it is a very simple class, and the type should not be known
outside of the program’s package. With these types the class Subject must be updated as
follows, where I have only shown the methods that raises an exception:

public class Subject implements ISubject, IPoint, Cloneable
{
 private String id; // the subject id
 private String name; // the subject's name
 private int ects = 0; // the subtect's ECTS

 public Subject(String id, String name) throws SubjectException
 {
 this(id, name, 0);
 }

 public Subject(String id, String name, int ects) throws SubjectException
 {
 if (!ISubject.subjectOk(id, name)) throw new
 SubjectException("The subject must have both an ID and a name", "name");
 if (ects < 0) throw new SubjectException("ECTS must be non-negative", "ects");
 this.id = id;
 this.name = name;
 this.ects = ects;
 }

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

76

Exception handling

76

 public void setName(String name) throws SubjectException
 {
 if (!ISubject.subjectOk(id, name)) throw new
 SubjectException("The subject must have a name", "name");
 this.name = name;
 }

 public void setECTS(int ects) throws SubjectException
 {
 if (ects < 0) throw new SubjectException("ECTS must be non-negative", "ects");
 this.ects = ects;
 }
}

Note that also the interface ISubject and IPoint must be updated such that the methods
throws the correct exception types. Also note that the program can compile and run, although
the test methods referes to Exception instead of SubjectException, for a SubjectException is
especially an Exception.

http://s.bookboon.com/EOT

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

77

Exception handling

For the sake of courses I have defined the following exception types:

class CourseException extends StudentsException
{
 public CourseException(String message)
 {
 super(message);
 }
}

class ScoreException extends CourseException
{
 private int score;

 public ScoreException(String message, int score)
 {
 super(message);
 this.score = score;
 }

 public int getScore()
 {
 return score;
 }
}

Next, the class Course should be updated with these types, and the same applies to the
interface ICourse.

On this place I have defined four exception classes which form a hierarchy:

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

78

Exception handling

It is very common that exception types for a program in this way consists of a hierarchy
of classes with Exception as a common base class. On the other hand, it depends on the
job, programmer, etc., how far you go and how many types you define, and above I have
probably gone to far which the benefits of the many types is modest.

I’ve also updated four of the methods in the class Factory:

public abstract class Factory
{
 public static ISubject createSubject(String id, String name)
 throws SubjectException
 {
 return new Subject(id, name);
 }

 public static ISubject createSubject(String id, String name, int ects)
 throws SubjectException
 {
 return new Subject(id, name);
 }

 public static ICourse createCourse(int year, ISubject subject)
 throws CourseException
 {
 return new Course(year, subject);
 }

 public static ICourse createCourse(int year, String id, String name)
 throws CourseException, SubjectException
 {
 return new Course(year, createSubject(id, name));
 }

The four methods return new exceptions similar to those exceptions the concrete constructors
can raise. You should especially notice the last. When createSubject() can raise an exception
of the type SubjectException, the method can raise two kinds of exceptions and you need to
note how you with throws has to indicate that a method can raise several kinds of exceptions.

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

79

Exception handling

79

When a method with throws indicates that it may raise an exception, the compiler demands
that the calling code must be placed in a try/catch. Thereby forcing the programmer to
deal with the exceptions that a method can raise. It may seem cumbersome, but it helps to
provide a robust code. Is there anything that can result in an error, then the programmer
must necessarily consider what to do if the error occurs. It’s the whole fundamental principle
of exception handling. Below is a test method:

private static void test()
{
 try
 {
 ICourse course1 = Factory.createCourse(2015, "MAT7", "Mathematics");
 course1.setScore(7);
 System.out.println(course1.getId());
 System.out.println(course1 + " " + scourse1.getScore());
 ICourse course2 = Factory.createCourse(2015, "MAT6", "");
 System.out.println(course2.getSubject());
 }
 catch (SubjectException ex)
 {
 System.out.println(ex.getField() + ": " + ex.getMessage());
 }

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

80

Exception handling

 catch (ScoreException ex)
 {
 System.out.println(ex.getMessage());
 }
 catch (CourseException ex)
 {
 System.out.println(ex.getMessage());
 }
 finally
 {
 System.out.println("End!!");
 }
}

The code in the try block can raise three kinds of exceptions, and there is, therefore, three
catch blocks. It is the type of a possible exception, that determines which catch is performed
and it is one of the main reasons to have more exception types because in this way you can
control the action that should happen. In this case there is no particular reason for it, since
the error handler each time consists of printing an error message. Note, however, the first
catch, where I use, that the exception has a method getField(). You should also notice that
the handler for ScoreException must come before the handler for CourseException because
a ScoreException also is a CourseException and the runtime system looks for a match from
start to bottom.

Finally, there is a finally block. It does not have to be there, and in this case, it has no
sense, but a finally block is always performed regardless of whether there is an exception
or not. It may, for example be used to close files, terminate connections to databases etc.
If the method is executed the result is:

2015-MAT7
Mathematics 7
name: A subject must have a name
End!!

Here you should note that the last statement in the try block is not executed because it raises
an exception and thus interrupt the try block. Note also that the finally block is performed.

As mentioned, there in this example is no particular need to distinguish between the three
types of exceptions, and the code could instead be written as follows:

private static void test()
{
 try
 {

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

81

Exception handling

 ICourse course1 = Factory.createCourse(2015, "MAT7", "Mathematics");
 course1.setScore(7);
 System.out.println(course1.getId());
 System.out.println(course1 + " " + scourse1.getScore());
 ICourse course2 = Factory.createCourse(2015, "MAT6", "");
 System.out.println(course2.getSubject());
 }
 catch (StudentsException ex)
 {
 System.out.println(ex.getMessage());
 }
 finally
 {
 System.out.println("End!!");
 }
}

for all three kinds of exceptions’s are also a StudentsException.

As discussed above a user-defined exception directly or indirectly inherit Exception, and if a
method that can raise such an exception is performed, you must with throws specify which
exception the method can raise. Such exceptions are said to be checked.

6.2	 UNCHECKED EXCEPTIONS

There is another possibility. I have extended the class Team with a method that returns the
n-th student:

public IStudent getStudentAt(int n) throws Exception
{
 if (n < 0 || n >= list.size()) throw new Exception("Illegal index for Student");
 return list.get(n);
}

It raises an exception if n is an illegal index. In a way, it is not interesting, because if n is
illegal, the method will automatically raise an exception, which is a RuntimeException, and it
is an exception, which need not necessarily be handled. If you still even need to capture the
index error (possibly because of the error message) you could write the method as follows:

public IStudent getStudentAt(int n)
{
 if (n < 0 || n >= list.size())
 throw new RuntimeException("Illegal index for Student");
 return list.get(n);
}

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

82

Exception handling

82

so that it now raises a unchecked exception. Note that this means that the method no longer
has a throws, and that in turn means that the method can be used outside of a try/catch.

If you in your own programs uses unchecked exceptions, you should in the same as with
checked exceptions define your own exception types that are classes derived directly or
indirectly from RuntimeException. You must remember, however, that there are rarely good
reasons to use unchecked exceptions. They are intended for exceptions regarding serious
errors where it no longer make sense to continue the program’s execution. Applied unchecked
exceptions in your own programs, you override just the whole idea of exception handling
where you force the calling code to treat any exceptions, but there are situations, and I will
later show examples when I look on abstract data types.

95,000 km
In the past 5 years we have drilled around

—that’s more than twice around the world.

What will you be?

Who are we?
We are the world’s leading provider of reservoir characterization,
drilling, production, and processing technologies to the oil and
gas industry.

Who are we looking for?
We offer countless opportunities in the following domains:
n Operations
n Research, Engineering, and Manufacturing
n Geoscience and Petrotechnical
n Commercial and Business

We’re looking for high-energy, self-motivated graduates
with vision and integrity to join our team.

careers.slb.com

http://s.bookboon.com/Schlumberger1

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

83

Exception handling

EXERCISE 6

Open the project PaLib again. The project consists for now of two packages

1.	palib.util
2.	palib.gui

but there is also a third package, called palib – although NetBeans does not show it. You
must add an exception type called PalibException when it should be in the package palib.
Note that you must enter the name of the package:

You must then add an exception class in the package palib.gui, when the class is called
GuiException and when it must be derived from PalibException.

The class Tools has a method createImageIcon() which loads an image from the application’s
jar file. If the image can not be loaded (may be because the name is wrong) the method
returns null, which is perhaps an unfortunate solution. You must change the method so
that it instead raises a GuiException if an error occurs while loading the image. Remember
that you must also update the comment. Build the project so it is ready for use.

Create a new program, that you can call ImageProgram. Add a package to the project with
the name imageprogram.images. Copy the image stone.jpg (from this books directory) to the
new package. Add a reference to the class library PaLib to the project.

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

84

Exception handling

The program must open the following window, where the center contains a label:

When the user click on one button, the program should show the image stone.jpg, an when
the user click on the other button, the result should be a GuiException (for example, because
the name is misspelled).

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

85

Generic types

85

7	 GENERIC TYPES

In this chapter I will look at generic types and generic methods. In fact, I already used
generic types many times as such an ArrayList<T>, which indicate the type of the kind of
objects that the list should contain. Similarly, I have used several generic interfaces such as
Comparable<T>. In this section I will show how also user-defined types can be defined generic.

I would start with a class representing a circular buffer. A buffer is a container (with Java
terms a collection), which may contain objects, and to the buffer is associated methods that
manipulate the content. A buffer can be implemented in several ways, but here I will look
at a so-called circular buffer, a buffer with room for a certain number of objects. Such a
buffer can be easily implemented by means of an array:

American online
LIGS University

▶▶ enroll by September 30th, 2014 and

▶▶ save up to 16% on the tuition!

▶▶ pay in 10 installments / 2 years

▶▶ Interactive Online education
▶▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

86

Generic types

Basically, there are to a buffer associated two operations called insert() and remove(), where
the first inserts an element into the buffer, while the other removes the oldest element – the
element that has been longest in the buffer. The figure above illustrates an empty buffer,
and the arrow tail is the index where the next element should be inserted. Similarly, the
head is the index of the next element to be removed. Initially, the buffer is empty and the
arrows points to the same place. Below is how the buffer looks after inserted 7 elements –
the method insert() is executed 7 times:

If you then remove two elements – the method remove() is executed 2 times – the picture is:

The elements are in principle remained in the data structure, but there is no access to them.
If you then add 3 elements, you get the result:

Here you should especially note that the tail index wraps around so that the next element
to be inserted is in position 0. The next figure shows the buffer, after 4 additional elements
are removed:

and the latter figure shows the result after insertion of two additional elements:

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

87

Generic types

The name circular buffer is derived from the indices that wraps around when they reach
the end of the array.

It is simple to implement such a data structure, and the first and foremost challenge is to
keep track of when the buffer is full and empty. Of course one can not add elements to a
full buffer, just as you can not remove elements from an empty buffer. The problem can be
solved in several ways, but I will use a simple counter that counts the number of elements.
This requires an additional variable, but it is, in turn, easy and efficient to implement each
method, as it is easy to ask the buffer about the number of elements it contains. Following
these considerations, you can implement a buffer to integers as follows:

package generic;

public class IntBuffer
{
 private int[] buff; // array to the buffer
 private int head = 0; // index to the place in front of the first element
 private int tail = 0; // index of the last element of the buffer
 private int count = 0; // number of elements in the buffer

 public IntBuffer(int n)
 {
 buff = new int[n];
 }

 public int getCount()
 {
 return count;
 }

 public boolean empty()
 {
 return count == 0;
 }

 public boolean full()
 {
 return count == buff.length;
 }

 public int peek() throws Exception
 {
 if (empty()) throw new Exception("The buffer is empty");
 return buff[head];
 }

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

88

Generic types

88

 public int remove() throws Exception
 {
 if (empty()) throw new Exception("The buffer is empty");
 int elem = buff[head];
 head = next(head);
 --count;
 return elem;
 }

 public void insert(int elem) throws Exception
 {
 if (full()) throw new Exception("The buffer is full");
 buff[tail] = elem;
 tail = next(tail);
 ++count;
 }

 private int next(int n)
 {
 return (n + 1) % buff.length;
 }
}

 .

http://s.bookboon.com/AlcatelLucent

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

89

Generic types

There is not much to explain, and the implementation is quite effective. The two methods
empty() and full() is trivial and the fundamental methods insert() and remove() are also
effective, since in addition to test for an exception they solely do some simple operations.
You should also note the method peek(), which returns the oldest element in the buffer,
but without removing it.

As an example the method test01() creates an IntBuffer with room for five numbers. The
program will iterate over a loop where it randomly either insert a number or remove a
number. Some operations will fail because the buffer is either full or empty.

private static void test01()
{
 IntBuffer buffer = new IntBuffer(5);
 for (int i = 0; i < 100; ++i)
 if (rand.nextBoolean())
 try
 {
 System.out.println("<< " + buffer.remove());
 }
 catch (Exception ex)
 {
 System.out.println(ex.getMessage());
 }
 else
 try
 {
 int t = rand.nextInt(90) + 10;
 buffer.insert(t);
 System.out.println(">> " + t);
 }
 catch (Exception ex)
 {
 System.out.println(ex.getMessage());
 }
}

The class IntBuffer, however, has one disadvantage, as it only can be used for elements of
type int. To use a buffer to other types of elements, it is necessary to add a new class. One
solution is to write a buffer where the element type is Object:

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

90

Generic types

package generic;

public class ObjBuffer
{
 private Object[] buff; // array to the buffer
 private int head = 0; // index to the place in front of the first element
 private int tail = 0; // index of the last element of the buffer
 private int count = 0; // number of elements in the buffer

 public ObjBuffer(int n)
 {
 buff = new Object[n];
 }

 public int getCount()
 {
 return count;
 }

 public boolean empty()
 {
 return count == 0;
 }

 public boolean full()
 {
 return count == buff.length;
 }

 public Object peek() throws Exception
 {
 if (empty()) throw new Exception("The buffer is empty");
 return buff[head];
 }

 public Object remove() throws Exception
 {
 if (empty()) throw new Exception("The buffer is empty");
 Object elem = buff[head];
 head = next(head);
 --count;
 return elem;
 }

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

91

Generic types

91

 public void insert(Object elem) throws Exception
 {
 if (full()) throw new Exception("The buffer is full");
 buff[tail] = elem;
 tail = next(tail);
 ++count;
 }

 private int next(int n)
 {
 return (n + 1) % buff.length;
 }
}

You should note that it is almost the same class, and it is only a question of the type of
the elements everywhere is changed from int to Object. All the algorithms are exactly the
same and have the same effectiveness as in the class IntBuffer. With this buffer you can
write something like the following:

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 �33rd place Financial Times worldwide ranking: MSc
International Business

•	 1st place: MSc International Business
•	 1st place: MSc Financial Economics
•	 2nd place: MSc Management of Learning
•	 2nd place: MSc Economics
•	 �2nd place: MSc Econometrics and Operations Research
•	 �2nd place: MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

92

Generic types

private static void test03()
{
 ObjBuffer buffer = new ObjBuffer(10);
 try
 {
 buffer.insert("Svend");
 buffer.insert(23);
 buffer.insert("Knud");
 buffer.insert(3.14);
 buffer.insert("Valdemar");
 buffer.insert(new IntBuffer(5));
 while (!buffer.empty()) System.out.println(buffer.remove());
 }
 catch (Exception ex)
 {
 System.out.println(ex.getMessage());
 }
}

and if the method is executed the result is

Svend
23
Knud
3.14
Valdemar
generisk.IntBuffer@6d06d69c

The buffer can contain everything that is an Object, and in this case it is a String, an Integer,
a String, a Double, a String and an IntBuffer. Note that the compiler performs auto boxing
of 23 and 14.3. It immediately seems smart, and in this case it is also fine as the only thing
to do with the items when removed from the buffer is that they are printed – and any
Object has a toString(). In other cases, however, it will be necessary to test the type of the
elements when they are removed from the buffer and make a proper typecast. The biggest
problem, however, is that the class ObjBuffer is not type strong, as you can fill anything
into it, and it increases the risk of errors. This can be solved by defining a generic type.

Looking at the test method test03(), it is in fact that rarely that you needs a collection,
which can contain anything. It is far more common that you need a collection of integers,
a collection to strings or to objects of one type or another. To solve this problem, it is
possible to parameterize a class where a parameter specifying the type of the objects that
the class has to work with. Such a parameterized class is called a generic class, and the class
buffer may be written as follows:

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

93

Generic types

package generic;

import java.util.*;

public class Buffer<T> implements IBuffer<T>
{
 private T[] buff; // array to the buffer
 private int head = 0; // index to the place in front of the first element
 private int tail = 0; // index of the last element of the buffer
 private int count = 0; // number of elements in the buffer
 public Buffer(int n)
 {
 buff = Utils.createArray(n);
 }

 public int getCount()
 {
 return count;
 }

 public boolean empty()
 {
 return count == 0;
 }

 public boolean full()
 {
 return count == buff.length;
 }

 public T peek() throws Exception
 {
 if (empty()) throw new Exception("The buffer is empty");
 return buff[head];
 }

 public T remove() throws Exception
 {
 if (empty()) throw new Exception("The buffer is empty");
 T elem = buff[head];
 head = next(head);
 --count;
 return elem;
 }

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

94

Generic types

94

 public void insert(T elem) throws Exception
 {
 if (full()) throw new Exception("The buffer is full");
 buff[tail] = elem;
 tail = next(tail);
 ++count;
 }

 private int next(int n)
 {
 return (n + 1) % buff.length;
 }
}

First, observe that this version of the buffer is nearly identical to the previous two, and
that it is primarily a question of the element type anywhere is replaced by a parameter T.
When the class is declared, you specify that it is generic:

public class Buffer<T>

http://s.bookboon.com/BI

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

95

Generic types

and depends on a single parameterized type T. Throughout the class T is used as it was a
concrete type. The compiler of course do not know what T is, and the only thing you can
do with a T object is also what you can do with an Object, but for collection classes such
as Buffer is also the only thing that is needed. The only problem is the creation of the array,
since you can only create an array whose type is Object – you can not write for example
new T[99], since the compiler does not know what T is for a type. As I often will need to
create a generic array, I have moved this operation to a method in a class Utils to be able
to use it in other contexts:

class Utils
{
 public static <T> T[] createArray(int length, T… arr)
 {
 return Arrays.copyOf(arr, length);
 }
}

Preliminary simply accept the syntax, but copyOf() is a static method in the class Arrays,
which creates an array of a given length, and copy another array. Note that the class Utils
is defined in the same file as the class Buffer, but it should be placed somewhere else, what
is the topic for the next exercise.

The class Buffer<T> implements an inteface:

public class Buffer<T> implements IBuffer<T>

and the interface does nothing more than define the class’s methods. The aim is alone to
show that also an interface may be generic:

package generic;

/**
 * Defines a generic buffer for objects of a certain type.
 */
public interface IBuffer<T>
{
 /**
 * @return Number of elements in the buffer
 */
 public int getCount();

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

96

Generic types

 /**
 * @return true, if the buffer is empty
 */
 public boolean empty();

 /**
 * @return true, if the buffer is full
 */
 public boolean full();

 /**
 * Returns the oldest (first) element in the buffer without removing it,
 * @return The oldest (first) element of the buffer
 * @throws Exception If the buffer is empty
 */
 public T peek() throws Exception;

 /**
 * Returns the oldest (first) element in the buffer and remove the element from
 * the buffer.
 * @return The oldest (first) element of the buffer
 * @throws Exception Iff the buffer is empty
 */
 public T remove() throws Exception;

 /**
 * Adds an element to the buffer.
 * @param elem The element to be added
 * @throws Exception If the buffer is full
 */
 public void insert(T elem) throws Exception;
}

The advantage of generic types as Buffer<T> is that the compiler can test whether the type
is used correctly, and any errors are localized, before a program is used. Therefore, it is not
advisable to use types the likes ObjBuffer as they increase the risk that the generated code
containing errors.

However, it should be noted that the type parameter to a generic class must be an Object
and can not be a simple type. As an example you can not write:

Buffer<int> buffer = new Buffer(10);

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

97

Generic types

97

and if you needs a buffer to the elements of a simple type, it is necessary to use wrapper
classes:

Buffer<Integer> buffer = new Buffer(10);

However, it is not as big a problem as the compiler in many contexts perform the required
type conversions by auto boxing and auto unboxing.

EXERCISE 7

In this exercise you shoul as in exercise 6 work on PaLib.

You must add a new exception class to palib.util named UtilException.

You must then copy the two types IBuffer<T> and Buffer<T> to palib.util and you must
modify the types such that they everywhere (there are three methods) raises a UtilException
instead of an Exception. Also remember to update the IBuffer<T> and remember to update
the comments.

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

98

Generic types

Add a class Utils (still in palib.util). The class shall initially only have the method createArray()
from the corresponding class in the file with Buffer<T>, and then the class should be deleted
in this file.

Build the class library.

Finally, write a test program called TestBuffer when this program must use your class library
and perform the same as the test method test01() in the project Generic (see above).

7.1	 MORE ON PARAMETERS

The name of the parameter type plays no role and the type can be anything and especially
also another generic type. As an example the following method creates an ArrayList to
elements of the type ArrayList<Integer>:

private static void test04()
{
 ArrayList<ArrayList<Integer>> lists = new ArrayList();
 lists.add(new ArrayList());
 lists.add(new ArrayList());
 lists.get(0).add(2);
 lists.get(0).add(3);
 lists.get(0).add(5);
 lists.get(0).add(6);
 lists.get(1).add(23);
 lists.get(1).add(29);
 for (ArrayList<Integer> list : lists)
 {
 for (Integer t : list) System.out.print(t + " ");
 System.out.println();
 }
}

and if you execute the method the result is:

2 3 5 6
23 29

As mentioned, you can specify multiple parameter types, and the class below shows a
parameterized class Pair that is parameterized by two parameters:

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

99

Generic types

package generisk;

public class Pair<K, V>
{
 private K key;
 private V value;

 public Pair(K key, V value)
 {
 this.key = key;
 this.value = value;
 }

 public K getKey()	
 {
 return key;
 }

 public V getValue()
 {
 return value;
 }
}

EXERCISE 8

Add the class Pair<K, V> to your class library when it must be added the package palib.util.
Create a test program that defines an ArrayList with elements of type Pair, where the first
parameter is a String (the name of a king), while the second parameter, is a Pair<Integer,
Integer> and indicates the king’s reign. Place the following kings in the data structure:

-- Gorm den Gamle, 936, 958
-- Harald Blåtand, 958, 987
-- Svend Tveskæg, 987, 1014

and print the content of the data structure on the screen when the result must be printed
in a method print(). The result should be

Gorm den Gamle, 936 – 958
Harald Blåtand, 958 – 987
Svend Tveskæg, 987 – 1014

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

100

Generic types

100

7.2	 RAW CLASSES

Java has a so-called collection API discussed later in this book, which contains generic classes.
An ArrayList is an example, but a generic class may also be used as a so-called raw class in
which you do not indicate a parameter type. Consider the following method:

private static void test05()
{
 ArrayList list = new ArrayList();
 list.add("Knud");
 list.add(3.14);
 list.add(new Pair<Integer, String>(1, "Margrete"));
 for (Object obj: list) print(obj);
 Buffer buffer = new Buffer(10);
 try
 {
 buffer.insert("Knud");
 buffer.insert(3.14);
 buffer.insert(new Pair<Integer, String>(2, "Margrethe"));
 while (!buffer.empty()) print(buffer.remove());
 }
 catch (Exception ex)
 {

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

101

Generic types

 System.out.println(ex.getMessage());
 }
}

private static void print(Object obj)
{
 System.out.println(obj + ": " + obj.getClass());
}

This method creates an ArrayList, but without specifying a parameter. The compiler can not
check the type of the objects added to the list, and it processes the list, as was the parameter
of the type Object. This means that you can add anything to the list. The same applies to
custom generic types, and you can create a Buffer without specifying a parameter type. If
the above method is performed, you get the result:

Knud: class java.lang.String
3.14: class java.lang.Double
generisk.Pair@6d06d69c: class generisk.Pair
Knud: class java.lang.String
3.14: class java.lang.Double
generisk.Pair@7852e922: class generisk.Pair

Generally it is not advisable to use the raw versions of the generic classes since the compiler
can not type check and leads to code that easily can contain errors.

7.3	 GENERIC METHODS

Also, methods can be defined generic. Below is a method that seeks an element in an array:

public static <T> int linSearch(T[] arr, T elem)
{
 for (int i = 0; i < arr.length; ++i) if (arr[i].equals(elem)) return i;
 return -1;
}

The method is defined generic, as it acts on an arbitrary array. The algorithm is simple
and consists only in a run through the array from start to finish. If the element exists, the
method returns the element’s index. If it is not found, the method returns -1, when it
can not be a legally index. You should note that the method returns the index of the first
element found. You should also note that the method implicitly assumes that the parameter
type implements equals() with value semantic. An example of an application of the method
could be:

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

102

Generic types

private static void test06()
{
 Integer[] arr = { 2, 3, 5, 7, 11, 13, 17, 19 };
 System.out.println(Generic.<Integer>linSearch(arr, 11));
 System.out.println(linSearch(arr, 12));
}

Note that in the first call of the method I indicates the parameter type, which in principle
is the correct syntax, but it is not necessary because the compiler from the type of the array
arr can see that the parameter type is Integer.

I have previously shown the method createArray() and it is another example of a generic
method.

EXERCISE 9

Add the method linSearch() to the class Utils in your class library.

Then you must write a program, that you can call SearchProgram1. The program must have
a method

private static Integer[] createArray(int n)
{
}

that creates and returns an array with n elements, that must be the even numbers

2, 4, 6, 8, 10, …

and after the array is created and initialized the method should shuffle the elements, such
they occur in random order.

There should also be a method

private static void search(Integer[] arr, int elem)
{
}

that search an element in the array with the library method linSearch(). The method should
print where the element is found or not and how many nano seconds the search has taken.

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

103

Generic types

103

In the main() method you should create an array with 10000000 elements (og the type
Integer). Then you should run a loop, where you must enter a number and then call the
metod search(). The loop must repeat until you enter 0.

An example to execute the program could be:

? 124
Found at index 3430834 : 23855452
? 1234
Found at index 616 : 63935
? 123
Not found : 58309823
? 0

http://s.bookboon.com/volvo

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

104

Generic types

PROBLEM 3

In mathematics wee works with sets and you can think of a set as a container for objects
and thus a collection. A set is characterized by the following properties:

-- contains(), which tests whether an element is in the set
-- union(), which returns the union of the current set and another set
-- intersection(), which returns the intersection of the current set and another set
-- differense(), which returns the set difference between the current set and another set
-- subset(), which returns a subset of elements that satisfy a certain condition

You must write a generic class that represents a set with the above operations. Start with a
new project, you can call SetProgram. The project must have a class with the above methods
and the following methods:

-- add(), that add an element to the set – if the element already exists in the set the
operation should be ignored

-- remove(), that remove an element from the set – if the element is not in the set
the operation should be ignored

Finally, the class must implement the iterator pattern:

package setprogram;

import java.util.*;
/**
 * Class representing a set with the classical set operations.
 * The class's goal is the sole to illustrate a generic class, but it has little
 * practical use since the methods complexity is bad.
 */
public class Set<T> implements Iterable<T>
{

 private ArrayList<T> list = new ArrayList(); // to the elements

 /**
 * Creates an empty set
 */
 public Set() {}

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

105

Generic types

 /**
 * Creates a set that contains elements.
 * @param t The elements that the set must contains
 */
 public Set(T … t) {}

 /**
 * Adds an element to the set. If the element already exists in the set,
 * the operation is ignored.
 * @param e The element to be added
 */
 public void add(T e) {}

 /**
 * Remove an element from the set. If the element does not exist in the set,
 * the operation is ignored.
 * @param e The element to be removed
 */
 public void remove(T e) {}

 /**
 * Implements contains.
 * @param e The element to be tested
 * @return true, if the element is found
 */
 public boolean contains(T e) {}

 /**
 * Implements union
 * @param A The set to create an union with this set
 * @return The union of the current set and A
 */
 public Set<T> union(Set<T> A) {}

 /**
 * Implements intersection.
 * @param A The set to create an intersection with this set
 * @return The intersection of the current set and A
 */
 public Set<T> intersection(Set<T> A) {}

 /**
 * Implements set difference
 * @param A The set to create a set difference between this set and A
 * @return The set difference between this set and A
 */
 public Set<T> differens(Set<T> A) {}

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

106

Generic types

106

 /**
 * Implements subset.
 * @param ok Selector, indicating the elements to be included in the subset
 * @return The elements that meets the selector
 */
 public Set<T> subset(ISelect<T> ok) {}

 /**
 * Implements the iterator pattern.
 * @return Iterator, that iterates through all elements in the set
 */
 public Iterator<T> iterator() {}
}

Regarding the method subset(), you must transfer a method that determines which elements
to include in the subset. This can be done by means of an interface:

package setprogram;
/**
 * Interface, that defines a simple selector for elements in a subset.
 */

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

107

Generic types

public interface ISelect<T>
{
 public boolean select(T e);
}

When you have written the class, you should test it from the main() method.

Note that the purpose of the task is only to show an example of a generic class, but the
class has no particular practical interest, since it is inefficient. A set as a collection type,
in turn, has interest and I will in a later book show how to implements a set that has a
better complexity.

7.4	 BOUND PARAMETER TYPES

Sometimes you can for generic methods and classes be interested in putting restrictions on
the parameter type, so it’s not all classes that can be used.

Above I have shown a generic method linSearch(), which searches for an element in an array.
The method implements linear search, which is an algorithm that searches for an element
in an array by comparing with the array’s elements from start to finish. If the array has n
items, it means using n/2 comparisons in average. This method in turn requires nothing
about the elements and only they can be compared with equals(). Therefore, the method
could be applied to arrays of arbitrary type.

Another search method is called binary search and can be used if you know in advance that
the array is sorted, for example in ascending order. The principle is that you start to compare
with the middle element, and if it is the element to sought, you are finished. Otherwise, it
examines whether the element being searched is greater than or less than the middle element.
Is it bigger than, you know, because of the array is sorted that element, if it exists, must
lie in the right half, or else it must be in the left part. You now repeat the procedure, but
only on the half of the array. This means that you have halved the number of elements to
be searched. The same will happen next time, and in the last step (if the element is not
found previously) you get a subarray whose length is 0. If the array has n elements, and
each iteration halves the length, the necessary number of comparisons is limited by (as you
just should accept), but for large values of n, it is much better than the n / 2. The result
of this little quick presentation of binary search is that it is a search method that is much
better than linear search, but it is important to emphasize that it assumes that the array to
be searched, is sorted.

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

108

Generic types

It is relatively simple to implement binary search in Java. Below is a generic method, but
it requires that you can compare the elements (whether to take the left half or right half),
and the parameter type must therefore implements the interface Comparable:

public static <T extends Comparable<T>> int binSearch(T[] arr, T elem)
{
 for (int a = 0, b = arr.length – 1; a <= b;)
 {
 int m = (a + b) / 2;
 if (arr[m].equals(elem)) return m;
 if (arr[m].compareTo(elem) < 0) a = m + 1; else b = m – 1;
 }
 return -1;
}

You should note the syntax:

T extends Comparable<T>

Here, the word extends means the type T either must to inherit a class or implement an
interface. In this case it is the interface Comparable<T>, which means that objects of the
type T can be compared. If you try to apply the method to objects that do not directly or
indirectly implements Comparable<T>, you gets a compiler error.

One say that the parameter type T is bound to the type Comparable<T>. It can of course
also be used in the context of generic classes. Below is a class Point to represent a point
of two coordinates. The coordinates type must be a number, and the wrapper classes to
numbers all extends the abstract class Number. Then I can write a class that can be used
by all wrapper classes:

package generic;
public class Point<T extends Number>
{
 private T x;
 private T y;

 public Point(T x, T y)
 {
 this.x = x;
 this.y = y;
 }

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

109

Generic types

109

 public T getX()
 {
 return x;
 }

 public T getY()
 {
 return y;
 }

 public String toString()
 {
 return "(" + x + ", " + y + ")";
 }

 public double length(Point p)
 {
 return Math.sqrt(sqr(x.doubleValue() – p.x.doubleValue()) +
 	 sqr(y.doubleValue() – p.y.doubleValue()));
 }

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

110

Generic types

 private double sqr(double x)
 {
 return x * x;
 }
}

You must especially note the method length(), which returns the distance between two
points. In order to implement the calculation, the method uses doubleValue() on all the
coordinates, and it is possible, as the compiler know that the T is a Number and thus
makes this method available. The compiler knows on the other hand not where the type is
an Integer, a Double etc., But it is also not necessary. Consider the following test method,
which shows that you can determine the distance between two points, where the one has
Integer coordinates, and the other has Float coordinates:

private static void test08()
{
 Point<Integer> p1 = new Point(5, 7);
 Point<Float> p2 = new Point(1.42, 3.14);
 System.out.println(p1);
 System.out.println(p2);
 System.out.println(p2.length(p1));
}

It is possible to bind a parameter type to several types with the following syntax:

class TesClass<T extends Type1 & Type2 & Type3)

Here only one of the types can be a class, while the other must be interfaces, and the one
that is a class, must be the first.

EXERCISE 10

Add the method binSearch() to the class Utils in your class library. Then you must write a
program, that you can call SearchProgram2. The program should be identical to the program
SearchProgram1, except two things

1.	 the program must use binSearch() instead of linSearch()
2.	 the method createArray() must not shuffle the elements

Test the program and see if you can observe a time difference relative to SearchProgram1.

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

111

Generic types

7.5	 GENERIC TYPES AND INHERITANCE

In most cases, the use of generic types are without major problems, but the compatibility
of inheritances is not quite what you might expect. If, for example you have a method

void show(Number t) { … }

so you can immediately transfer an Integer, a Long, a Float etc. as an actual parameter to
show(), since they all specifically is a Number. Consider, however, the following methods:

private static void test09()
{
 Point<Integer> p = new Point(1, 2);
 show(p);
}

private static void show(Point<Number> p)
{
 System.out.println(p);
}

If you tries to compile these methods, you get an error that says that p is not compatible with
Point<Number>. It would perhaps be expected when an Integer is compatible with Number
because Integer inherits Number, but Point<Integer> does not inherit the Point<Number>
and therefore the types are not compatible.

For the sake of the following, it is necessary to look at type inteference. It deals with how
the compiler treats the call of a method and the definitions of objects to determine the
type of the arguments and thus determine whether the call is possible. In this context, the
compiler attempts to determine the most specific type which can be used for all arguments.
This has importance with generic methods and is best explained with an example:

private static void test10()
{
 Number t1 = value(new Integer(23), new Double(3.14));
 // Float t2 = value(new Integer(23), new Double(3.14));
}

private static <T> T value(T t1, T t2)
{
 return rand.nextBoolean() ? t1 : t2;
}

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

112

Generic types

112

The example does not perform something interesting and must only show that it is legal
code that can be compiled correctly. value() is a generic method with one type parameter.
The method has two parameters of this type, and returns a random of these objects. The
first statement in test10() is legal, since both Integer and Double inherits Number. They are
therefore type inferente, and the compiler can compile the code and type parameter will at
runtime be a Number. In turn, the last statement in test10() is not permitted, since Float
is not type inferent with Integer or Double. Put a little different type inference is a matter
that the compiler out of the context can see the type to be used for a type parameter. That’s
why you can call the generic method linSearch() as

System.out.println(Tools.linSearch(arr, 12));

instead of writing

System.out.println(Generic.<Integer>linSearch(arr, 11));

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

113

Generic types

It is possible to use wild cards, which is a ? and indicates an unknown type. It can be used
to write more general methods. Consider the following code:

private static void test11()
{
 print1(create(2, 3, 3.14, 1.42));
// print1(create(2, 3, 5, 7));
// print1(create(2.1, 3.2, 5.3, 7.4));
}

private static <T> ArrayList<T> create(T … values)
{
 ArrayList<T> list = new ArrayList();
 for (T t : values) list.add(t);
 return list;
}

private static void print1(ArrayList<Number> list)
{
 for (Number n : list) System.out.print(n + " ");
 System.out.println();
}

which can be translated and run, and it is probably not so very strange. When create() is
called, there are 4 actual parameters that because of the auto boxing are converted into
objects of type Integer and the type Double. Because of the type inferencen the method
create() creates an ArrayList of objects of the type Number and thus an object of the type
ArrayList<Number>. This object can be transferred as a parameter to the method print1().
If you in the method test11() removes the first comment, you gets a compiler error. create()
is called again with 4 actual parameters, but this time they are boxed as objects of the type
Integer. The method will return an object to the type ArrayList<Integer>, and as explained
in the beginning of this section, it is not compatible with the parameter to print1(). The
problem can be solved with a wildcard:

private static void print1(ArrayList<? extends Number> list)
{
 for (Number n : list) System.out.print(n + " ");
 System.out.println();
}

The method print1() is now called with a parameter of type ArrayList<T> where T inherits
(or implements) Number. The type Number is called an upper bound.

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

114

Generic types

The wildcards do not needs to be bounded, and you can write a method like the following:

private static void print2(ArrayList<?> list)
{
 for (Object obj : list) System.out.print(obj + " ");
 System.out.println();
}

It will accept any ArrayList<T> as a parameter. Unbounded wildcards has not so many uses
but can be used if the method only perceive an element as an Object.

A wild card may also have a lower bound:

private static void print3(ArrayList<? super Integer> list)
{
 for (int i = 0; i < list.size(); ++i) System.out.print(list.get(i) + " ");
 System.out.println();
}

The syntax is simple enough and means that the method as a parameter can use any
ArrayList<T> where the parameter type T is a super type of Integer. This means that Integer
must inherit or implement T. As an example you can write:

private static void test13()
{
 print3(create(2, 3, 3.14, 1.42));
 print3(create(2, 3, 5, 7));
 ArrayList<Double> list = create(2.1, 3.2, 5.3, 7.4);
//   print3(list);
}

The first create() creates as mentioned an ArrayList<Number>, which may be used as a parameter
to print3(), because Integer extends Number. The second create() creates an ArrayList<Integer>
that can also be used as a parameter, but the third creates an ArrayList<Double>, which is
not a supertype of ArrayList<Integer>. You must specifically note that if you changed the
last line to

print3(create(2.1, 3.2, 5.3, 7.4));

then things would work. The compiler will see that the method print3() requires an
ArrayList<? super Integer> and the parameters to create() are boxed to objects of the type
Double, but because of the type of inferencen between Double and Integer, the compiler
will create an ArrayList<Number>.

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

115

Lambda expressions

115

8	 LAMBDA EXPRESSIONS

If you in Java wants to transfer a method as a parameter to another method, this is done
by means of an interface. An interface is a type and can specifically be used as a parameter
to a method. Before I show how, I would say a little more about anonymous classes, which
as the name says is a class that has no name. I have already mentioned anonymous classes
above in connection with the iterator pattern.

8.1	 ANONYMOUS CLASSES

As an example I will use the following types that I have seen on in the book Java 1:

package lambda;

public interface Note
{
 public int getValue();
 public void print();
}

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

116

Lambda expressions

package lambda;

public abstract class BankNote implements Note
{
 private int value;

 public BankNote(int value)
 {
 this.value = value;
 }

 public int getValue()
 {
 return value;
 }
}

It is types that defines banknotes. In Java 1, I also defined specific classes for Danish
banknotes, but here I will show how these classes can be defined as anonymous classes. As
an example you can define a 50 kr. banknote as follows (where all the code are written on
a single line):

Note n1 = new Note() { public int getValue() {return 50; }
 public void print() {
 System.out.println("50 kr., Sallingsundbroen og Skarpsalling-karret"); }};

An anonymous class is defined by an interface (possibly a class), and the syntax is to write
the interface name followed by parentheses:

INote n1 = new INote() { … };

and in the following block you then write the code for the methods that the interface
defines. The class of the object in question has no name, and an anonymous class must
therefore always be defined as part of an expression.

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

117

Lambda expressions

Anonymous classes are suitable and can simplify the code in situations in which you only
needs a single object of a particular type. If the job had anything to do with banknotes, it
would hardly be the case and the above and the following examples are also intended merely
to show the syntax. Anonymous classes is most justified in those cases where the interface
is used to define a few or perhaps only one method. The advantage is of course that in a
program – and especially a GUI program – you do not has to write a series of simple classes
that do other than to implement a single method, but there is also a disadvantage, as the
code easily becomes difficult to read and even more difficult to write correct. The last you
can help a little by not writting the code on a single line:

Note n2 = new Note()
{
 public int getValue()
 {
 return 100;
 }

 public void print()
 {
 System.out.println("100 kr., Den gamle Lillebæltsbro og Hindsgavl-dolken");
 }
};

It is something more readable, but comparing it with the fact that an anonymous class
always occur in an expression, and in most cases it will be an assignment as above or as a
parameter to a method, it is clear that you fast ends out with code which is hard to read.
It is exactly what the lambda expression should do better.

Below is another example of an anonymous class, but this time the class is defined on the
basis of the abstract class BankNote:

Note n3 = new BankNote(200) { public void print() {
 System.out.println("200 kr., Knippelsbro og bælteplade fra Langstrup"); }};

The syntax is essentially the same, but the example should show that you can pass values
to the constructor, and the anonymous class only needs to implement the abstract methods
of the class BankNote. Below is a third example:

Note n4 = new BankNote(500) {
 public void print()
 {
 System.out.println(
 "500 kr., Dronning Alexandrines bro og bronzespanden fra Keldby");
 }
};

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

118

Lambda expressions

118

Below is a method that has Note objects as parameters:

private static void print(Note … notes)
{
 int sum = 0;
 for (Note n : notes)
 {
 sum += n.getValue();
 n.print();
 }
 System.out.println("Value: " + sum);
}

The method is simple and does nothing but print the objects (performs the method print())
and the sum of their values. The parameter type is defined by an interface and the method
knowns what this interface tells, but the actual parameters must naturally be objects created
on the basis of concrete classes. Below is an example of calling the method, and you will
primarily notice that one of the parameters are defined as an object of an anonymous class
written directly in the call of the method:

print(n1, n2, n3, n4, new BankNote(1000) { public void print() {
 System.out.println("1000 kr., Storebæltsbroen og Solvognen"); } });

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

119

Lambda expressions

8.2	 METHODS AS PARAMETERS

In other programming languages, such as C and C ++ you can transfer references to
methods as parameters to another method. This can not be done directly in Java, and it is
necessary to transfer a method encapsulated in an object. The objects in this way transfered
as a parameter to a method is usually defined by an interface. Consider as an example, the
following interface, which defines a method that has an int parameter and returns a boolean:

interface ISelector
{
 public boolean select(int t);
}

Below is a method that prints the elements of an int array, but only the elements where
an ISelector object returns true:

private static void print(int[] arr, ISelector s)
{
 for (int t : arr) if (s.select(t)) System.out.print(t + " ");
 System.out.println();
}

It is thus an example of how to transfer a method select() as a parameter to another method.
Suppose there are defined the following array:

int[] arr = new int[120];
for (int i = 0; i < arr.length; ++i) arr[i] = i;

and assume that you want to use the above print() method to print all 2-digit numbers.
You must then send an ISelector object as a parameter, and to create such an object, you
must have a class:

class Select2 implements ISelector
{
 public boolean select(int t)
 {
 return t > 9 && t < 100;
 }
}

You can then print the numbers as follows:

print(arr, new Select2());

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

120

Lambda expressions

If instead you want to print all prime numbers, you can write the following class that
implements the interface ISelector:

class SelectPrimes implements ISelector
{
 public boolean select(int t)
 {
 if (t == 2 || t == 3 || t == 5 || t == 7) return true;
 if (t < 11 || t % 2 == 0) return false;
 for (int n = 3, m = (int)Math.sqrt(t) + 1; n <= m; n += 2) if (t % n == 0)
 return false;
 return true;
 }
}

and then you can print the primes with the following statement:

print(arr, new SelectPrimes());

It is clear that in the situation where you have to transfer a method as a parameter to
another method it is obvious to use an anonymous class. If you again wish to print all
2-digit numbers, you can use the following statement:

print(arr, new ISelector() {
 public boolean select(int t) { return t > 9 && t < 100; } });

where the ISelector object this time is defined on the basis of an anonymous class. The class
Select2 is then unnecessary. Similarly, one can print the prime numbers in the following way:

print(arr, new ISelector() {
 public boolean select(int t)
 {
 if (t == 2 || t == 3 || t == 5 || t == 7) return true;
 if (t < 11 || t % 2 == 0) return false;
 for (int n = 3, m = (int)Math.sqrt(t) + 1; n <= m; n += 2) if (t % n == 0)
 return false;
 return true;
 }
 });

but here are the benefits are not as big as this leads to code that is hard to read. If you
want to print the 2-digit numbers, you can also use the following syntax:

print(arr, t -> t > 9 && t < 100);

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

121

Lambda expressions

121

It is an example of a lambda expression, and even if it seems mysterious, it is both simple
to write and read. In its simplest form, the syntax of a lambda expression is

e -> expression

where the expression typically depends on e, and determines a value. In this case the compiler
knows the print() method and knows that it requires an ISelector object and the lambda
expression must therefore act on an int and return a boolean. Specifically, what happens is
that the compiler creates an anonymous ISelector object that implements the select() method
on the basis of the lambda expression.

It is also possible to write the selection of prime numbers by means of a lambda expression:

print(arr, t -> {
 if (t == 2 || t == 3 || t == 5 || t == 7) return true;
 if (t < 11 || t % 2 == 0) return false;
 for (int n = 3, m = (int)Math.sqrt(t) + 1; n <= m; n += 2) if (t % n == 0)
 return false;
 return true;
});

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

122

Lambda expressions

but then you are back to a code that is hard to read, and in this case I prefer to write a
method:

public static boolean isPrime(int t)
{
 if (t == 2 || t == 3 || t == 5 || t == 7) return true;
 if (t < 11 || t % 2 == 0) return false;
 for (int n = 3, m = (int)Math.sqrt(t) + 1; n <= m; n += 2) if (t % n == 0) return false;
 return true;
}

and then write:

print(arr, t -> isPrime(t));

8.3	 EXAMPLES OF LAMBDA EXPRESSIONS

The following examples are intended to show examples of lambda expressions, including
variations of the syntax. As an example, I use a collection of postal codes, a collection that
I have shown in a previous example in this book, and the starting point is thus the class:

package lambda;

public class Post implements Comparable<Post>
{
 private String code; // the zip code
 private String city; // name og the town

 public Post(String code, String city)
 {
 this.code = code;
 this.city = city;
 }

 public String getCode()
 {
 return code;
 }

 public String getCity()
 {
 return city;
 }

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

123

Lambda expressions

 public void setCity(String city)
 {
 this.city = city;
 }

 public String toString()
 {
 return code + " " + city;
 }

 public boolean equals(Object obj)
 {
 if (obj == null) return false;
 if (getClass() == obj.getClass()) return ((Post)obj).getCode().equals(code);
 return false;
 }

 public int hashCode()
 {
 return code.hashCode();
 }

 public int compareTo(Post post)
 {
 return code.compareTo(post.getCode());
 }
}

The class has changed a bit, and you should especially note that the class overrides equals()
where objects solely are compared on there zip code, and the class implements the interface
Comparable<Post> so that the objects are arranged only by the zip codes.

The class Postcodes is a collection of Danish postal codes, and the class is in many ways also
the same as before, where the objects are created based on the nested class Data. The class
is expanded with a few methods, and the one iterator is removed. The class is as follows:

package lambda;

import java.util.*;

public class Postcodes implements Iterable<Post>
{
 private ArrayList<Post> list = new ArrayList();

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

124

Lambda expressions

124

 public Postcodes()
 {
 Data data = new Data();
 for (int i = 0; i < data.length(); ++i)
 list.add(new Post(data.getCode(i), data.getCity(i)));
 }

 public int length()
 {
 return list.size();
 }

 public Post get(int n)
 {
 return list.get(n);
 }

 public Post get(String code) throws Exception
 {
 for (Post p : list) if (p.getCode().equals(p)) return p;
 throw new Exception("Zip code " + code + " not found");
 }

http://s.bookboon.com/IE

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

125

Lambda expressions

 public Iterator<Post> iterator()
 {
 return list.iterator();
 }

 public static class Data
 {
 …
 }
}

The program defines the following object, that I will use in the following:

private static Postcodes post = new Postcodes();

I will start with a search method that can search in the collection post. The method should
have two parameters, where the one is the zip codes, while the other is the search criteria,
which is a method that can select the objects to be included. Such a method could be
defined with an interface in the following way:

public interface SearchPostcodes
{
 public boolean select(Post p);
}

and thus in the same manner as I before defined ISelector. However, it is unnecessary for the
Java API defines a generic interface Predicate<T> for this purpose and method of searching
can then be defined as follows:

private static ArrayList<Post> search(Postcodes post, Predicate<Post> select)
{
 ArrayList<Post> list = new ArrayList();
 for (Post p : post) if (select.test(p)) list.add(p);
 return list;
}

The predicate is called select, and it has a method called test() and parameter of the type
Post. This method returns true if a zip code meet the criterion.

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

126

Lambda expressions

If, for example you want to find all the zip codes where the city name starts with “Ski”,
you can write:

private static void test03()
{
 print(search(post, p -> p.getCity().startsWith("Ski")));
}

private static void print(ArrayList<Post> list)
{
 for (Post p : list) System.out.println(p);
}

As another example, the following method finds all zip codes that start with 5 and where
the city name includes the text “køb”, but so that there is no distinction between uppercase
and lowercase:

private static void test04()
{
 print(search(post,
 p -> p.getCode().startsWith("5") && p.getCity().toLowerCase().contains("køb")));
}

The above search method returns an ArrayList<Post> and in relation to lambda expressions
the important parameter is Predicate<Post>. However, there are other options, and the
following search method has also a Consumer<Post> as a parameter:

private static ArrayList<Post> search(Postcodes post, Predicate<Post> tester,
 Consumer<Post> action)
 {
 ArrayList<Post> list = new ArrayList();
 for (Post p : post) if (tester.test(p))
 {
 action.accept(p);
 list.add(p);
 }
 return list;
}

A Consumer<Post> object has a method called accept(), that has a Post object as a parameter.
The idea is that you then can modify the objects before they are added to the list. As an
example, chooses the method below that selects all zip codes where the city name states with
“Ski”, but before the objects are placed in the list, the city name is converted to uppercase:

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

127

Lambda expressions

127

private static void test05()
{
 print(search(post, p -> p.getCity().startsWith("Ski"),
 p -> p.setCity(p.getCity().toUpperCase())));
}

The last search method had a parameter of type Consumer<Post>, which has a void method
accept(), which has a Post object as a parameter.

There is a generic interface Function, which is parameterized with the two types, that
defines a method apply(), and wherein the two parameters denotes respectively the type of
a parameter to apply() while the other is the type of a return value. Below is another search
function, there as parameters has a Predicate<Post> and a Function<Post, Post>. The method
has a Post object as parameter, and returns the same object again, but after the method
apply() is used on the object:

private static ArrayList<Post> search1(Postcodes
post, Predicate<Post> tester,
 Function<Post, Post> func)
{
 ArrayList<Post> list = new ArrayList();

http://s.bookboon.com/EOT

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

128

Lambda expressions

 for (Post p : post) if (tester.test(p)) list.add(func.apply(p));
 return list;
}

You should note that this time I have called the method search1() and not the search(). The
reason is that otherwise the compiler can not distinguish between this search method and
the previous, as there will not be overloaded on the return value of a method. Below is an
example which uses the above search method:

private static void test06()
{
 print(search1(post, p -> p.getCity().startsWith("Ski"),
 p -> new Post(p.getCode(), p.getCity().toUpperCase())));
}

The difference is that this test method returns other objects than the previous test method
that modifieds the original collection.

All of these options can be combined:

private static <X, Y> ArrayList<Y> search(Iterable<X> source, Predicate<X> tester,
 Function <X, Y> mapper, Consumer<Y> action)
{
 ArrayList<Y> list = new ArrayList();
 for (X x : source)
 if (tester.test(x))
 {
 Y y = mapper.apply(x);
 action.accept(y);
 list.add(y);
 }
 return list;
}

It is a generic method, which is parameterized with two types X and Y, and it returns an
ArrayList<Y>. The method can be applied to any collection of objects of the type X that
implements the iterator pattern. For the objects that are selected by the predicate, the
method creates a new object of the type Y, and it is treated with the Consumer<Y> object
before it is saved in the result. As an example, the following method selects the zip codes
where the code begins with “78”. These objects are returned as a string, but before the city
name added to a StringBuilder:

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

129

Lambda expressions

private static void test07()
{
 StringBuilder builder = new StringBuilder();
 Collection<String> collection = search(post, p -> p.getCode().startsWith("78"),
 p -> p.toString(), s -> builder.append(s + ", "));
 for (String s : collection) System.out.println(s);
 System.out.println(builder.toString());
}

8.4	 JAVA FUNCTIONAL INTERFACES

In the section above I have used the interfaces

-- Predicate<T>
-- Consumer<T>
-- Function<T, R>

that are generic interfaces, all of which defines a single method, and they are actually defined
to be used by a lambda expression. They are defined in java.util.function, and there are
defined some more functional interfaces (next 50) and you are encouraged to investigate
what interfaces are defined.

The functional interfaces looks like each other, and each interface has a single abstract method,
called the functional method for that functional interface. The interfaces are as mentioned
defined to be used with lambda expressions, but they are general purpose interfaces, and
are available to be used by user code anywhere. Of course they do not identify all possible
method prototypes to which lambda expressions might be used, but you should be aware
that other Java packages also define functional interfaces.

8.5	 EVENT HANDLERS

Probably the most important use of lambda expressions are attaching event handlers for
components in a GUI program, and in fact I have already used lambda expressions in GUI
programs several times. I have added a class to this project, called Window, and it opens
the same window as in the first example in the book Java 2. The only change is that the
event handlers are defined in a different way. The window has two buttons. One that erases
the contents of a list box, and the only thing that must happen is that the model must be
cleared. It can be written directly, using a lambda expression:

cmdClr.addActionListener(e -> model.clear());

The notation is appropriate if the event handler simply consists of a single statement
or perhaps several quite simple statements. If the event handler is more complex, it is
recommended to write a method:

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

130

Lambda expressions

130

private void addName(ActionEvent e)
{
 String name = txtName.getText().trim();
 if (name.length() > 0)
 {
 model.addElement(name);
 txtName.setText("");
 txtName.requestFocus();
 }
}

It must be a void method, and it must have a parameter of the type ActionEvent, but
otherwise it is a rather straightforward method. You can then write the event handler as

cmdAdd.addActionListener(e -> addName(e));

Java, however, has a different syntax for the same thing:

cmdAdd.addActionListener(this::addName);

There are no benefits of the last writing, and one can even say that it is yet another use of
the word this, but once you’ve used it for a while, the syntax is sensible enough.

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

131

Collection classes

9	 COLLECTION CLASSES

A collection class is a container for objects, and a good example is the type ArrayList, which
is discussed and used many times in the previous books. A collection class is a little more
than just a container for objects since the class also provides a number of methods available
which are used to manipulate the container’s objects. Java has many other collection classes
than ArrayList, and they differ in terms of how they are implemented and store their objects,
as well as the services they provides in the form of methods. Overall reflects these collection
classes the tasks that typically occur in programs to manipulate a family of objects.

It should immediately be said that the goal of this chapter is to give an overview of the
collection classes, which classes exist and what they can be used for, but it is not a detailed
review of the collection classes and how they work. However, it is the subject of the book
Java 17.

Java collection classes are contained in a framework, which basically consists of three things:

1.	 abstract classes and interfaces that defines the various collection classes and their
main characteristics

2.	 concrete classes that implements the interfaces in the framework
3.	 algorithms that are methods for a number of typical tasks such as searching and

sorting

The whole framwork is generic in terms of both interfaces and classes, and the algorithms are
defined as generic methods. The description of this framework is the goal of the following
chapter. The first task is of course to get an overview of the content and in related to thatt
how the various classes can be used. Moreover, it is necessary to have a general knowledge
of how each class is implemented and working as it is a prerequisite for choosing the right
class for the right task.

9.1	 OVERVIEW OF THE COLLECTION CLASSES

There are many interfaces and abstract classes, which together define the characteristics of
the collection classes, and I will mention below the main. Basic the framework is a hierarchy,
but there are individual classes which are outside the hierarchy. The main are abstract classes
and interfaces where I actually already have used some of them:

-- Iterable is an interface that defines that a class implements the iterator pattern, and
you can itererates the container’s objects with a for each statement.

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

132

Collection classes

-- Collection is a basic interface as the most of all collection classes in the hierarchy
implements. It’s rare that you directly refer to this interface, but it can be used if
you write very general methods, and some of methods in the class Collections have
parameters whose type is this interface.

-- List is an interface that defines containers that have a sequence of objects, where
each object is identified by an index. A List can not have holes, but it may contain
the same objects more than once. An ArrayList is an example of a List.

-- Set, SortedSet, NavigableSet, Queue and Deque are all interfaces for containers, not
allowing the same element to exists several times. A SortedSet arranges the elements
in sorted order, while a NavigableSet offers search options. Queue is an interface
where you can access the oldest element and the class Buffer is actually a Queue. We
call such a data structure for a FIFO structure for Firts In First Out. In contrast,
a Deque represent a data structure where you always have access to the newest
element, and you’re talking about a LIFO data structure for Last In First Out. A
stack is an example of a Deque.

-- Map, SortedMap, NavigableMap are base classes for containers which stores key /
value pairs. In a SortedMap the keys are stored in sorted order. A NavigableMap is
a Map, which offer special search options. These three classes are not part of the
same hierarchy as the other types of collection classes.

-- Iterator and ListIterator are interfaces for iterators, and the difference is that the last
interface defines the methods of traversing a collection in both directions.

The relationship between these types are as shown below:

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

133

Collection classes

133

I will not describe the individual types and the methods that they defines, but I will instead
refer to the Java documentation, but it is all types that you must know and including their
main characteristics.

The main konkete classes are as follows:

-- ArrayList. It is a class I have used many times and can short be characterized as
a dynamic array. The class implements the interface List. It is definitely the most
frequently used of the collection classes.

-- LinkedList. It is also a List, but is implemented in a different way than ArrayList
and is an example of a double-linked list. In addition the class implements both
List, Queue and Deque.

-- HashSet. It is a Set and is implemented by hashing (explained below), and its
primary quality is, that it is highly effective in terms of insertion and references
to the elements.

-- TreeSet. It is also a set, but is implemented in a completely different way by using
a red-black tree. Unlike a HashSet a TreeSet guarantees that the elements are sorted.

-- HashMap. It is a map, which is a data structure comprising of key/value pairs. It
implements the data structure using hashing.

95,000 km
In the past 5 years we have drilled around

—that’s more than twice around the world.

What will you be?

Who are we?
We are the world’s leading provider of reservoir characterization,
drilling, production, and processing technologies to the oil and
gas industry.

Who are we looking for?
We offer countless opportunities in the following domains:
n Operations
n Research, Engineering, and Manufacturing
n Geoscience and Petrotechnical
n Commercial and Business

We’re looking for high-energy, self-motivated graduates
with vision and integrity to join our team.

careers.slb.com

http://s.bookboon.com/Schlumberger1

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

134

Collection classes

-- TreeMap. It is a SortedMap, and in contrast to a HashMap does it guarantee that
the elements are sorted by keys. The data structure is implemented by using a
red-black tree.

-- PriorityQueue. It is a data structure that corresponds to a Queue, but where one
can insert elements after a priority. The data structure is implemented using a heap
(see below).

In the following I will deal with these 7 data structures, focusing on their main features and
show examples of how they are used. I also roughly outlines how they are implemented, as
is necessary in order to use these classes effectively.

9.2	 ARRAYLIST

An ArrayList is as mentioned above, a dynamical array, that automatically grows with the
number of elements and you should have the following picture of an ArrayList:

where there are seven elements in the list. When you create an ArrayList the internal array
is empty, but when you add an item to the list, there is allocated room for 10 elements
(the number 10 actually depends on the implementation). The arrow indicates where the
next element is to be inserted, and the figure above illustrates such an ArrayList after that
the following statements are performed:

ArrayList<Integer> list = new ArrayList<>();
list.add(11);
list.add(5);
list.add(17);
list.add(3);
list.add(7);
list.add(23);
list.add(19);

If you now further performs the following statements:

list.add(0, 2);
list.add(5, 29);
list.add(13);

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

135

Collection classes

the picture is:

You should note that you can use add() with an index and then all elements to the right
of the index most be moved to make room for the new element. You should also note
that after these three statements, the entire capacity is used up, and the question is what
happens if you add another element

list.add(31);

As mentioned previously, the idea of an ArrayList is that it automatically expands. When
this happens the class uses an algorithm, that multiply the capacity by a constant (often
it is 2), but in my present implementation, it is 1½. Therefore, the capacity after adding
another element is 15:

The next time the array is extended, it will be to the capacity 22, then 33, then 49, then 73
and so on. The idea is that in most cases the addition of an element is extremely effective,
and only in a few cases in which the array is to be extended, there is for a long task. As
the array expands with increasing capacity, it becomes rarer that it must be expanded, and
the result of all this is that on average, it is very effective to add elements to an ArrayList.

As a programmer you should not think so much of it, because it is something that happens
internally, but you should know that the methods

-- add(), that add an element to the end of the list
-- get(), that returns the element at a particular index

are highly effective, while methods like

-- add(), that adds an element at a particular index
-- remove(), that removes an element

are less effective as they possibly must move many of the elements in the list (a list must
not have holes).

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

136

Collection classes

136

In general, an ArrayList is highly effective and that it periodically must be expanded to
increase the capacity is not something you have to think about. As an example is shown a list
initialized with random numbers and then the method determines the sum of the numbers:

private static void test01(List<Integer> list, int n)
{
 long t1 = Calendar.getInstance().getTimeInMillis();
 while (n-- > 0) list.add(rand.nextInt());
 long t2 = Calendar.getInstance().getTimeInMillis();
 long s = 0;
 long t3 = Calendar.getInstance().getTimeInMillis();
 for (Integer t : list) s += t;
 long t4 = Calendar.getInstance().getTimeInMillis();
 System.out.println(t2 – t1);
 System.out.println(t4 – t3);
}

If I performs the method on my machine with the following statement

test01(new ArrayList<Integer>(), 1000000);

American online
LIGS University

▶▶ enroll by September 30th, 2014 and

▶▶ save up to 16% on the tuition!

▶▶ pay in 10 installments / 2 years

▶▶ Interactive Online education
▶▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://s.bookboon.com/LIGS

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

137

Collection classes

the method must be added a million elements to the list, and on my machine the result was:

31
6

This means that it has taken 31 milliseconds of initializing the list and 6 milliseconds to
determine the sum. If I change the initialization statement to

while (n-- > 0) list.add(0, rand.nextInt());

and performs the method again, I get the result:

45876
6

and it will say that it has now taken over a ¾ minute to insert the numbers in the list, and
it’s quite a difference. The reason is that the elements this time are inserted at the beginning
of the list and all other elements in the list must therefore be moved one place to the right.
The example illustrates the great the difference in terms of efficiency depending on how the
elements are inserted and it is a difference that you in practice must be aware of.

You can also create an ArrayList from another collection, where I here use the class Arrays,
which has a method that creates a List:

ArrayList<Integer> list = new ArrayList<>(Arrays.asList(11, 5, 17, 3, 7));

In this case, the list capacity is the number of arguments that have been transferred and
hence 5 in this case.

As another example, regarding lists are shown a method that prints a collection:

private static void print(Collection<?> c)
{
 for (Object e : c) System.out.print(e + " ");
 System.out.println();
}

The method is trivial, but you should note two things. The parameter is a Collection
parameterized with an unbound wildcard, and you can then transfer any Collection as a
parameter. In addition, please note that the Collection inherits Iterable and therefore one
can iterate over a collection with for each.

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

138

Collection classes

As a final note to the class ArrayList please note that it implements the interface List and
thus Collection and Iterable. Moreover the class also implements three other interfaces:
Serializable, Cloneable and RandomAccess. The first interface is discussed ealier, Cloneable I
also mentioned earlier, and the last interface is a simple interface with no methods (such
an interface is called a marker interface). It tells the runtime system that the elements in an
ArrayList can be referenced by an index.

9.3	 LINKEDLIST

It’s also a list, and the class implements in the same way as an ArrayList the interface List. In
addition, it implements the interfaces Deque and Queue. Finally, it implements Serializable
and Cloneable but not RandomAccess. The class also has other methods than an ArrayList,
but what matters is that it is implemented in a whole different way, as a double linked list.

If you creates a LinkedList

LinkedList<Integer> list = new LinkedList();

you have an empty list, which you should think about in the following way:

that is two pointers pointing respectively to start and end of the list. That the list is empty
means that the two pointers both are null. The class has an add() method that works the
same way as in an ArrayList and adds an element to the end of the list. If you perform the
following statements

list.add(11);
list.add(13);

the picture of the list is as below:

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

139

Collection classes

139

A LinkedList consists of so-called nodes, where a node includes a data item and a pointer to
the previous node, and a pointer to the next node in the list. The first node (data element
11) has no predecessor, and its pointer to the previous node is null, and, similarly, the
pointer to the next item in the node with the data element 13 is also null. In turn, node
11 points forward on node 13, while node 13 points back to node 11.

Compared to an ArrayList a LinkedList has several methods to add items to the list:

list.addFirst(2);
list.addLast(53);
list.add(3, 19);

Here are addFirst() and addLast() are just special names for add() with index 0 and add()
with no index. If the above statements are performed, the result is:

 .

http://s.bookboon.com/AlcatelLucent

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

140

Collection classes

The idea with a LinkedList is that, when compared with an ArrayList it is simple to insert
an element and delete an element in the middle of the list. If, for example you performs
the statement

list.add(3, 17);

element 17 has to be inserted between 13 and 19:

This means to create a new node, and then change the 4 pointers, but you should not in
the same way as with an ArrayList move all elements to the right of the place where the
new element should be inserted.

If you assume that the element 17 is inserted and you performs the statement

list.remove(3);

is the result

This means that there are changed two pointers, and there is thus no longer references to
the item 17, which are then removed by the garbage collector. Again, the benefit is the same
that deletion requires few operations. Both insertion and deletion of elements is simple,
but requires special implementations of both inserting or deleting of elements in the ends
of the list.

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

141

Collection classes

Another property of a LinkedList is, that it is not in the same way as an ArrayList allocates
available capacity and periodically needs to expand, but on the other hand, each node uses
two additional pointers to neighbor elements, which also fills, and it in reality means that
a LinkedList not use less memory space than an ArrayList – and actually a bit more. With
regard og inserting and deleting elements in the middle of the list you should be aware
that although the operations are effective similar to that they simply consists of moving a
few pointers, but you should be aware that the access to the list is only possible through
the two pointers start and end, and there is therefore in principle necessary first to find
the place where to insert or delete an element – the class does not implement the interface
RandomAccess.

The most important characteristics of a LinkedList is that it is very effective to insert and
delete items in the beginning of the list, and the like at the end of the list (as an ArrayList).
These are the characteristics which are required by the implementation of a queue and a stack.

A queue is a data structure where you primary can add an item and removing an item but
such that the element that is removed, always is the oldest element – it’s the element been
the longest in the queue. Typically, you have the following picture of a queue

which adds elements where tail is pointing and remove the element where head is pointing.
Since a LinkedList just performs well when inserting elements at the end of the list and to
remove elements at the start of the list, it is suitable for implementing a queue, and that is
expressed that the class implements the interface Queue. This interface defines 6 methods,
that apart from the exceptions they can raise works in pairs like:

-- offer() and add(), that add an element to the queue
-- poll() and remove() that removes an element from the queue
-- peek() and element(), that returns the oldest element without removing it

Below is a method that creates a queue and inserts 6 elements in the queue (similar to
the figure above). Then the method prints the contents of the queue, and there after the
queue is empy:

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

142

Collection classes

142

private static void test02()
{
 Queue<Integer> q = new LinkedList();
 q.offer(2);
 q.offer(3);
 q.offer(5);
 q.offer(7);
 q.offer(11);
 q.offer(13);
 print(q);
 while (q.size() > 0) System.out.print(q.poll() + " ");
 System.out.println();
}

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 �33rd place Financial Times worldwide ranking: MSc
International Business

•	 1st place: MSc International Business
•	 1st place: MSc Financial Economics
•	 2nd place: MSc Management of Learning
•	 2nd place: MSc Economics
•	 �2nd place: MSc Econometrics and Operations Research
•	 �2nd place: MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

143

Collection classes

A stack is look likes a queue, and it is again a data structure, where you can add and remove
elements, but this time it is the element that was last added to the stack, that is is removed.
A stack can be illustrated as shown here:

where there are 6 elements om the stack. The arrow indicates the place where the next
element should be added. The implementation of a stack must be done using a data structure
that is effective in terms of insertion of an element in the stack and then to remove the
element again. These requirements meets both an ArrayList and a LinkedList. In the case of
a stack the two operations for inserting elements in a stack and remove elements from the
top of a stack is respectively called push() and pop(). A deque is a queue, where you can
insert and remove elements both at the beginning and end of the queue, and when the
class LinkedList implements the interface Deque, it is in principle a stack. The following
method shows how you in Java can define and use a stack:

private static void test03()
{
 Deque<Integer> s = new LinkedList();
 s.push(2);
 s.push(3);
 s.push(5);
 s.push(7);
 s.push(11);
 s.push(13);
 print(s);
 while (s.size() > 0) System.out.print(s.pop() + " ");
 System.out.println();
}

There is also a second collection class called ArrayDeque which implements a deque by
means of an ArrayList. It is with respect to a stack of slightly more effective.

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

144

Collection classes

EXERCISE 10

Write e program, that you can call ListProgram. The program should do the same as the
method test01() above, that is add 1000000 random integers to a list, and then iterartes
the list and determines the sum of the numbers. The program must for each of the two
operations prints how long this will take, but this time the list must be a LinkedList<Integer>.
Compare the result with the result af executing the method test01().

PROBLEM 3

You should write a program called StackProgram, that can be used to test a Deque, when
the type is used as a stack.

Add a simpel generic print method

private static <T> void print(T[] arr)
{
}

when the methed must print the array arr with all elements on the same line separated by
a space.

It is possible to sort an array using two stacks, and the following algorithm can be used:

for each element t i in the array repeat
{
 as long t i less than the top of the left stack do
 {
 pop the left stack and push the element on the right stack
 }
 as long t is greater than the top of the right stack do
 {
 pop the right stack and push the element on the left stack
 }
 push t on the left stack
}
as long the left stack is not empty do
{
 pop the left stack and push the element on the right stack
}
loop over the array from start to end
{
 pop the right stack and insert the element in the array
}

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

145

Collection classes

145

Write a generic method stackSort(T[] arr) that implements the above algorithm and sorts
an array.

Write a method test1(), that creates an array of the type Integer with 100 random numbers,
such that every number is greater than 9 and less than 100. The method should print the
array, sort it with the method stackSort() and print the array again.

Write a method test(int n), that creates an Integer array with n random elementens. The
method should sort the array with stackSort() and print how many milliseconds the sorting
has taken. What happens if n is 100, 1000, 10000, 100000?

9.4	 HASHSET

The interface Set defines a mathematical set and including the operations that you would
typically expect to perform on sets. In chapter 6 you have written a class that could represent
a set using an ArrayList, but I also noticed that the implementation of the set was not
especially effective. Java, however, has a class HashSet which also represents a set, and is in
turn effective. Consider the following method:

http://s.bookboon.com/BI

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

146

Collection classes

private static void test04()
{
 Set<Integer> A = new HashSet();
 Set<Integer> B = new HashSet();
 for (int i = 0; i < 10; ++i)
 {
 A.add(rand.nextInt(10));
 B.add(rand.nextInt(10));
 }
 Set<Integer> C = new HashSet(A);
 C.addAll(B);
 Set<Integer> D = new HashSet(A);
 D.retainAll(B);
 Set<Integer> E = new HashSet(A);
 E.removeAll(B);
 print(A);
 print(B);
 print(C);
 print(D);
 print(E);
}

This method creates two sets A and B and initializes them with digits. Next are determined
respectively the union, intersection and set difference. If the method is performed the result
could be:

0 1 5 6 8
0 1 2 4 7 8 9
0 1 2 4 5 6 7 8 9
0 1 8
5 6

The set A has 5 elements, and the set B has 7 elements. You should to note that the reason
why the number of elements are different and there are not 10 elements in each set due
to, that the same element can only occur once. You should also note that it looks like the
elements are ordered, but it is only apparent, and in connection with a HashSet you must
not assume any arrangement of the elements. You finally should notes the names of the
methods, where addAll() is union, retainlAll() is intersection and removeAll() is set difference.

Consider as another example, the following method:

private static void test05(int n)
{
 Set<Integer> A = new HashSet();

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

147

Collection classes

 Set<Integer> B = new HashSet();
 long t1 = Calendar.getInstance().getTimeInMillis();
 for (int i = 0; i < n; ++i)
 {
 A.add(rand.nextInt(n));
 B.add(rand.nextInt(n));
 }
 long t2 = Calendar.getInstance().getTimeInMillis();
 System.out.println(A.size() + " " + B.size() + " " + (t2 – t1));
 long t3 = Calendar.getInstance().getTimeInMillis();
 Set<Integer> C = new HashSet(A);
 C.addAll(B);
 long t4 = Calendar.getInstance().getTimeInMillis();
 System.out.println(C.size() + " " + (t4 – t3));
 long t5 = Calendar.getInstance().getTimeInMillis();
 Set<Integer> D = new HashSet(A);
 D.retainAll(B);
 long t6 = Calendar.getInstance().getTimeInMillis();
 System.out.println(D.size() + " " + (t6 – t5));
 long t7 = Calendar.getInstance().getTimeInMillis();
 Set<Integer> E = new HashSet(A);
 E.removeAll(B);
 long t8 = Calendar.getInstance().getTimeInMillis();
 System.out.println(E.size() + " " + (t8 – t7));
}

This method creates two sets of random integers between 0 and n, and then creates the
union, intersection and set difference. The method prints, how long each operation took:
Below is the result of executing the method with n = 10000000:

6321515 6321068 9696
8646902 1365
3995681 3630
2325834 1184

It has taken about 10 seconds to try to create the two sets with 10 million members,
and the result is sets at approximately 6 million elements. Secondly, it has taken about
1½ seconds to perform the union, about 3½ seconds to form the intersection and finally
just about 1 second to form the set difference. The conclusion is that a HashSet is a very
efficient data structure.

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

148

Collection classes

148

A HashSet is implemented by hashing, which is a technique in which an element in a
collection can be found by a calculation. Internal, the collection is an array of sufficient
size and the individual objects are placed in the array. When you add a new object, the
class calculates using an algorithm where in the array the object must be placed, and it is
placed there (if the place is not already used). Similarly, if you want to get a specific object
in the collection, then the class just calculate the object’s place and test whether it exists.
There is direct access to the individual objects without any search, and that is exactly what
makes the data structure extremely effective.

An Object has a method called hashCode(), which returns an int. When objects of a given
type can be stored in a HashSet, the object’s class must overrides the method hashCode()
with value semantic. It is a requirement that two objects that are equals() also must have
the same hashCode(), but it is also the only formal requirements. On the other hand, it is
the programmer’s responsibility to ensure that hashCode() is implemented in such a way that
the method returns values that are uniformly distributed. It should be particularly noted
that it is not a requirement that the two objects with the same hashCode() are equals().

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

149

Collection classes

9.5	 TREESET

The class TreeSet is also a Set, and you can exactly do the same as you can with a HashSet,
and the difference is that a TreeSet arranges the elements in a specific order. The elements to
be added to a TreeSet must therefore be objects created on basis of a class that implements
the interface Comparabel. If so, it sounds reasonable to use a TreeSet, if you needs a Set,
but you should be aware that a TreeSet not have the same effectiveness as a HashSet, and if
you do not need that the elements are sorted, you should choose a HashSet. It’s clear that
it costs something when you have to insert elements and possible delete them again such
that elements must be sorted.

It is not such that a TreeSet is inefficient and if you needs a sorted set, you should definitely
not disregard a TreeSet. Internally a TreeSet does not consists of an array, but is instead a
data structure composed of nodes that are linked together in much the same way as in a
LinkedList. In a TreeSet elements are organized in a binary tree:

and the requirements are that each element may not have more than two direct sequels, and
there should be exactly one element that has no predecessors and is called the root of the
tree. Furthermore, it must be the case that if you stand in a particular node, then the left
child must be null or less than where you stand, and the right child must be null or greater.
The sum of all this is that if you stand in a certain node, then that node is root of a subtree
in which all elements of the left subtree is less than the root and all elements in the right
subtree is greater than the root. This is exactly what gives the tree and thereby also a TreeSet
its qualities. You can then search the tree after the same principle as for binary search, and
it is thus highly effective to ask whether an element is in a TreeSet, and iterating the data
structure’s elements such that the elements are visited in sorted order are equally effective.

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

150

Collection classes

EXERCISE 11

Create a program, that you can call TreeProgram. Add the following class to the project:

package treeprogram;
public class Person implements Comparable<Person>
{
 private String firstname;
 private String lastname;

 public Person(String firstname, String lastname)
 {
 this.firstname = firstname;
 this.lastname = lastname;
 }

 public String getFirstname()
 {
 return firstname;
 }

 public String getLastname()
 {
 return lastname;
 }

 public String toString()
 {
 return firstname + " " + lastname;
 }

 public boolean equals(Object obj)
 {
 if (obj == null) return false;
 if (getClass() == obj.getClass())
 {
 Person pers = (Person)obj;
 return firstname.equals(pers.firstname) && lastname.equals(pers.lastname);
 }
 return false;
 }

 public int hashCode()
 {
 return firstname.hashCode() ^ lastname.hashCode();
 }

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

151

Collection classes

151

 public int compareTo(Person pers)
 {
 if (lastname.equals(pers.lastname)) return firstname.compareTo(pers.firstname);
 return lastname.compareTo(pers.lastname);
 }
}

The class represents a person with a name, and there is nothing to explain, but you should
note, that the class implements equals(), such that two Person objects are equals, if they have
the same name. The class also implements hashCode(), and the method use a XOR operation,
and although I have not yet explained what it is, it is enough to know that hashCode() is
implemented, so the value is determined both by a person’s first and last name. Finally you
should note, that the class implements the interface Comparable<Person>, such that Person
objects first are ordered after the last name and then by the first name.

Add the following method to the main class:

private static List<Person> createList()
{
 ArrayList<Person> list = new ArrayList();
 list.add(new Person("Karl", "Jensen"));

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://www.skf.com/knowledge

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

152

Collection classes

 list.add(new Person("Agnes", "Jensen"));
 list.add(new Person("Esben", "Hansen"));
 list.add(new Person("Abelone", "Andersen"));
 list.add(new Person("Knud", "Jensen"));
 list.add(new Person("Valborg", "Andesern"));
 list.add(new Person("Frede", "Jensen"));
 list.add(new Person("Olga", "Hansen"));
 list.add(new Person("Karlo", "Andersen"));
 list.add(new Person("Gudrun", "Hansen"));
 return list;
}

Then you should add a method, that prints the content of af collection, when the objects
must be printed as a comma separated list on the same line:

private static void print(Collection<?> collection)
{
}

Write two methods, that from a list creates a HashSet and a TreeSet:

private static Set<Person> createTreeSet(List<Person> list)
{
}

private static Set<Person> createHashSet(List<Person> list)
{
}

Finally you should test the methods in the main() method:

public static void main(String[] args)
{
 List<Person> list = createList();
 print(list);
 Set<Person> set1 = createHashSet(list);
 print(set1);
 Set<Person> set2 = createTreeSet(list);
 print(set2);
}

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

153

Collection classes

9.6	 HASHMAP AND TREEMAP

A Map is as mentioned a collection consisting of key/value pairs, where the key determines
the value. An example of a concrete class is a HashMap, which is a generic class parameterized
by two parameters, one for the key and the other for the value.

In the following example, the class Person is the same as in the previous exercise, and the
same applies to the method createList(). The following method creates a HashMap where
the key is a String, while the value is a Person object. The value of the key is the person’s
first name:

private static void test06()
{
 Map<String, Person> map = new HashMap();
 List<Person> list = createList();
 for (Person p : list) map.put(p.getFirstname(), p);
 for (String key : map.keySet()) System.out.println(key + "\t" + map.get(key));
}

Note how to add objects to a HashMap and you has to tell both the key and value. In this
case it is assumed that all people have different first names. Finally, note how to traverse the
data structure. First you get a Set with all keys, which you can traverse and using the key
and the method get() you can determine the value associated with the key. If you performs
the method, you get the result:

Knud		 Knud Jensen
Karlo		 Karlo Andersen
Agnes		 Agnes Jensen
Olga		 Olga Hansen
Karl		 Karl Jensen
Frede		 Frede Jensen
Abelone	 Abelone Andersen
Valborg	 Valborg Andesern
Gudrun	 Gudrun Hansen
Esben		 Esben Hansen

The name of a HashMap says that the keys internally are stored in a HashSet. There is
another implementation of a Map called a TreeMap, and the name here is derived from,
that the keys this time is stored in a TreeSet, which in turn means that if you traverse a
TreeMap, the elements will be sorted by the key.

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

154

Collection classes

154

If you in the above method replaces the first statement with the following

Map<String, Person> map = new TreeMap();

and the method is executed the result is:

Abelone	 Abelone Andersen
Agnes		 Agnes Jensen
Esben		 Esben Hansen
Frede		 Frede Jensen
Gudrun	 Gudrun Hansen
Karl		 Karl Jensen
Karlo		 Karlo Andersen
Knud		 Knud Jensen
Olga		 Olga Hansen
Valborg	 Valborg Andesern

http://s.bookboon.com/volvo

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

155

Collection classes

9.7	 PRIORITYQUEUE

I have above mentioned a queue, and a priorityqueue is a queue, where the elements are
added according to a priority, that means that the elements are orderede in the queue. The
order can be defined by the natural ordering, that is the ordering defined by a class that
implements Comparable, or by a Comparator provided at construction time. If a priority
queue is relying on natural ordering, objects inserted in the queue must be defined by a
class that implements Comparable. When elements are retrieved from the queue (for example
with poll()), it is the least element with respect to the specified ordering that is retrieved.

The class is implemented by a heap, that is a data structure, which acts as a binary tree,
but such that the element to be retrived next is a the root. It is an efficient data structure,
and a PriorityQueu is then an efficient collection.

EXERCISE 12

In this exercise you should test the class PriortyQueue. Create a program, that you can call
PriorityProgram. Add the class Person from exercise 11 to the project. Also take a copy of
the method createList() in exercise 11 and paste the method to the main class.

Add a method print()

private static void print(Queue<Person> q)
{
}

when the method must remove all elements from the queue (poll() all elements) and print
the elements as a comma separated list on a single line.

Next add a method test1()

private static void test1(List<Person> list)
{
}

that creates a PriorityQueue<Person> with natural ordering. The method must add all elements
in the list to the queue, and then the method should call print() to print the queue.

In the main() method you must create a list (by createList()) and call test1().

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

156

Collection classes

You should then write a method

private static void test2(List<Person> list)
{
}

that do exactly the same, but this time til ordering must be defined by a comparator, and
the comparator should be defined by a lambda expression. The syntax to create a queue is:

Queue<Person> q = new PriorityQueue<Person>(list.size(),
 (Person p1, Person p2) -> p1.getLastname().compareTo(p2.getLastname()));

To use a comparator the constructor to the class PriorityQueue needs two parameters. The
first parameter is an int and is an initial capacity. It has nothing to do with the comparator,
and in principle you can use any positive number, but the idea with an initial capacity is to
avoid the container to be expanded. The interface Comparator<Person> defines one method

int compare(Person p1, Person p2)

and to define this method as a lambda expression you needs an expression with two
arguments. You should note, the use of the parentheses around the arguments. When you
have written the method you must test it from the main() method.

Finally you should write a method

private static void test3(List<Person> list)
{
}

that do exactly the same as test2(), but this time til elements must be ordered by the first name.

If the program is executed, the result should be:

Abelone Andersen, Karlo Andersen, Valborg Andesen, Esben Hansen,
 Gudrun Hansen, Olga Hansen, Agnes Jensen, Frede Jensen, Karl Jensen,
 Knud Jensen
Abelone Andersen, Karlo Andersen, Valborg Andesen, Esben Hansen,
 Olga Hansen, Gudrun Hansen, Frede Jensen, Agnes Jensen, Knud Jensen,
 Karl Jensen
Abelone Andersen, Agnes Jensen, Esben Hansen, Frede Jensen, Gudrun Hansen,
 Karl Jensen, Karlo Andersen, Knud Jensen, Olga Hansen, Valborg Andesen

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

157

Collection classes

157

9.8	 THE ALGORITMS

Java’s collection API consist also of many methods, that can be used in practical programming
and are methods that you often needs. They are members in the class Collections, and are
all static methods whose first argument is the collection on which the operation is to be
performed. Most of the methods operates on a List, but a few operates on a arbitrary
Collection. The algorithms or methods are used for:

-- sorting
-- shuffling
-- data manipulation
-- searching
-- composition
-- finding extreme values

SORTING

The class Collections has a method sort(), that can be used to sort a List. It is a highly effective
sorting method that use an algorithm called merge sort. There is two versions, where the one
use the natural ordering, while the other use a comparator. The following method shows
how to use sort() to sort Person objects in natural order:

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://s.bookboon.com/Gaiteye

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

158

Collection classes

private static void test07()
{
 List<Person> list1 = createList();
 List<Person> list2 = new LinkedList();
 for (Person p : list1) list2.add(p);
 Collections.sort(list1);
 print(list1);
 Collections.sort(list2);
 print(list2);
}

You should note the syntax (and simpler it may not be), and you should note that it also
is possible to sort a LinkedList.

As another example the following method sorts a list with random integers and prints how
many milliseconds the sorting has taken:

private static void test08(int n)
{
 List<Integer> list = new ArrayList();
 for (int i = 0; i < n; ++i) list.add(rand.nextInt());
 long t1 = Calendar.getInstance().getTimeInMillis();
 Collections.sort(list, (Integer a, Integer b) -> -a.compareTo(b));
 long t2 = Calendar.getInstance().getTimeInMillis();
 System.out.println(t2 – t1);
}

On my machine I get the result 3349 (about three seconds) to sort 10 million numbers.

SHUFFLING

There is also a method to shuffle a collection of objects. The method is called shuffle(), and
the parameter is a List<T>. It is obviously not the most interesting method, but I have
nevertheless in previous examples written my own shuffle method, and if you need, it’s
good to know that there is a method, which is just to apply.

private static void test09()
{
 List<Integer> list =
 new ArrayList(Arrays.asList(2, 3, 5, 7, 11, 13, 17, 19, 23, 29));
 print(list);
 Collections.shuffle(list);
 print(list);
}

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

159

Collection classes

DATA MANIPULATION

The Collections class defines the following methods to manipulate the elements in a List:

-- reverse(), that reverse the order of all elements in a List.
-- fill(), that overrides all elements in a List with a specified value, and the method

is usefull to initialize a List.
-- copy() that copy all elements in one List to another List. The destination List must

be at least as long as the source. If it is longer, the remaining elements in the
destination List are unchanged.

-- swap(), that swaps two elements in a List.
-- addAll(), that adds all elements in an array to a Collection.

private static void test10()
{
 List<Integer> list1 = new ArrayList();
 Collections.addAll(list1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29);
 print(list1);
 Collections.fill(list1, 5);
 print(list1);
 List<Integer> list2 = new ArrayList();
 Collections.addAll(list2, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37);
 Collections.copy(list2, list1);
 print(list2);
}

2 3 5 7 11 13 17 19 23 29
5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 31 37

SEARCHING

The class Collections implements also binary search:

<T> int binarySearch(List<? extends Comparable<? super T>> list, T key)
<T> int binarySearch(List<? T> list, T key, Comparator<? super T> cmp)

As I have mentioned binary search, there is not more to say of it, but of course it is good
to know that it already exists, so it is not necessary to implement it.

COMPOSITION

This group of methods contains two methods

-- frequency(), that counts the number of times a specified element occurs in a Collection.
-- disjoint(), that determines whether two Collection of objects are disjoint and then

has no elements in common.

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

160

Collection classes

160

The following method shows to use this methods:

private static void test11()
{
 List<Integer> list1 = new ArrayList();
 Collections.addAll(list1, 11, 2, 3, 5, 7, 3, 11, 13, 17, 19, 3);
 System.out.println(Collections.frequency(list1, 2));
 System.out.println(Collections.frequency(list1, 3));
 System.out.println(Collections.frequency(list1, 11));
 System.out.println(Collections.frequency(list1, 12));
 List<Integer> list2 = new ArrayList();
 Collections.addAll(list2, 2, 4, 8, 16, 32, 64);
 List<Integer> list3 = new ArrayList();
 Collections.addAll(list2, 4, 8, 16, 32, 64);
 System.out.println(Collections.disjoint(list1, list2));
 System.out.println(Collections.disjoint(list1, list3));
}

PDF components for PHP developers

www.setasign.com

SETASIGN
This e-book
is made with
SetaPDF

http://s.bookboon.com/Setasign

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

161

Collection classes

1
3
2
0
false
true

FINDING EXTREME VALUES

That is two simple methods min() and the max() that, respectively, determines the minimum
and maximum element in a Collection(). Both methods exists in two versions. The one takes
only a Collection as parameter and returns the minimum (or maximum) element according
to the elements’ natural ordering. The other also has Comparator as a parameter.

EXERCISE 12

Write a program, that you can call MinMax. The main() method must create an ArrayList
initialized with 10 random numbers of the type Double. After the list is created, it should
be printed.

You must then use the methods min() and max() to prints, respectively, the smallest value
and the biggest value in the list.

Finally you should du the samme, but this time the numbers must be compared with their
numerical deviation from 0.5.

The result could be:

0.46732756489906613
0.6364287975820527
0.41794515249897457
0.4886474458162239
0.24707263700220072
0.30797749425175236
0.9921562698882159
0.23247661998977032
0.40622432064377734
0.5122684891300776

0.23247661998977032
0.9921562698882159
0.4886474458162239
0.9921562698882159

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

162

Annotation

10	 ANNOTATION

Annotations, are a form of metadata, and then data about a program that is not part of the
program itself. Annotations have no direct effect on the execution of the program, but it is
a way to write information to the compiler, that can use annotations to detect errors, but
there are also annotations that are examined at runtime. Furthermore, there is some software
tools that use annotations to generate code. Through the books you will see several uses of
annotations but I will only show one in this book. Consider again the class Person, where
I have only shown the part of the code that is related to annotations

public class Person implements Comparable<Person>
{
 …

 @Override
 public String toString()
 {
 return firstname + " " + lastname;
 }

 @Override
 public boolean equals(Object obj)
 {
 if (obj == null) return false;
 if (getClass() == obj.getClass())
 {
 Person pers = (Person)obj;
 return firstname.equals(pers.firstname) && lastname.equals(pers.lastname);
 }
 return false;
 }

 @Override
 public int hashCode()
 {
 return firstname.hashCode() ^ lastname.hashCode();
 }

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

163

Annotation

163

 @Override
 public int compareTo(Person pers)
 {
 if (lastname.equals(pers.lastname)) return firstname.compareTo(pers.firstname);
 return lastname.compareTo(pers.lastname);
 }
}

In front of four of the methods I have written @Override. It is an annotation. It tells
the compiler that the method is overridden from the base class or an interface, and the
compiler will report an error if, for example, I have spelled the name of a method wrong.
It remove a source of errors from the code, because you else may believe that a method is
been overridden without it actually is. It is therefore recommended to use this annotation
in front of all methods that are overridden.

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://s.bookboon.com/osram

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

164

Packages

11	 PACKAGES

A Java program consists of many classes and interfaces. First, the classes that you yourself
write, and also the classes that come from the Java API. To avoid name matches and to
increase clarity, classes and other types are placed in packages. For example are Java’s own
classes divided into a very large number of packages. The basic package is called java.lang,
and it contains all the basic classes such as String, System, Object, the wrapper classes etc.
The classes in this package is immediately available for the runtime system, and you do not
have to do anything special to use these classes. Things are different with classes in other
packages. As an example, I have often used the class Random. This class is in the package
java.util, which as the name says is a package of miscellaneous classes or tools. This means
that the full name of the class is java.util.Random. If you have to create an object, you can
therefore write:

java.util.Random rand = new java.util.Random();

When it is difficult to write (you has to write much), and it also makes the code harder to
read, you can specify an import statement:

import java.util.Random;

which tells what the class Random means, and so you can just write the class name:

Random rand = new Random();

One should note that it is also the only thing that an import means and it is not a question
that anything is imported into the program, but only that the class Random is directly
available. When programs and classes usually uses many classes from the Java API, it can
lead to many import statements, and therefore it is allowed to write

import java.util.*;

which shortly means that you can directly use all the classes and interfaces in the package
java.util. It’s something that is many opinions and arguments for and against, but I usually
use the short notation.

When you in a NetBeans project creates a new class, it is automatically placed in a package
with a package statement as the first statement:

package projectname;

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

165

Packages

The package name is by default the project name, but it need not be the case. A package
statement must be the first statement in a source file (except for a possible comment), and
the file must contains import statements as the next statements. A Java source file generally
contains only one type and can contain only one public type, which must have the same
name as the source file. If, for example you have the type

public class Str
{

the source file must be called Str.java and written with uppercase and lowercase letters as
shown here. The file can contain several types, but it is generally advised not to do so,
although there are sensible exceptions. When a file has several types, they can not be public,
and therefore has package visability.

Until this place, my projects has only had one package, but if you write a large program
with many classes, I often choses to place classes into multiple packages, so that classes on
the same concept are in the same package.

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

166

Final example

166

12	 FINAL EXAMPLE

In this chapter I will show the development of a simple GUI program. It’s not a large
program, and the goal is both to show the use of some of the concepts discussed in this
book and to finish with an example where the focus again is on the process.

The process is described in relative detail, and the program is developed according to the
MVC pattern. This pattern and in general the guidelines regarding the development of a
program is first treated in the book Java 7, but you should easily be able to follow the process
without having read Java 7. If in the description of the process is referred to concepts that
you are not quite with on, just ignore it.

12.1	 THE TASK

The task is to write a program that simulates a simple game, which consists of a square of
5 × 5 pieces arranged in random order. One of the pieces is empty, and you can move a
piece by moving a neighbor to the empty piece. In the case below (the square on the left)
you can then move the pieces H, E, L and J (you can not move diagonally). The game is
solved when the pieces are arranged as shown in the example to the right.

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://www.deloitte.ca/careers

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

167

Final example

You must assign a high score list to the program where to save the three best results. A
result consists of the number of moves, used to solve the square, and it is therefore to solve
the square by moving as few pieces as possible.

The square is basically a 5 × 5 square, but it must be possible to configure the program so
that you can also play with a 3 × 3 square, a 7 × 7 square and a 9 × 9 square.

PROJECT START

I created a folder called puzzles, and it will contain all the files concerning this project.
I have also created a subfolder called doc, which will contain all the project’s documents.
Preliminary contains this folder the above description of the task.

12.2	 ANALYSIS

In this case, the analysis is simple, since the task is simple, and since the formulation of
the task extensively describes the task. There are few issues to be clarified.

In the project description, the individual pieces are symbolized with letters. It’s ok by a 5 × 5
square, but is not sufficient by respectively a 7 × 7 and 9 × 9 square. It is therefore decided
to symbolize the pieces in a 3 × 3 and 5 × 5 square with letters, while there in a 7 × 7 and
9 × 9 must be used integers from 1 onwards.

 With regard of the high score list it should be attached a high score list for each of the
four levels of difficulty, as it does not make sense of comparing results from different levels
of difficulty.

As the program’s philosophy is entertainment and results can not be regarded as significant,
it is agreed that high score lists are saved as regular files, and the program does not require
database access. This means that anybody can delete the high score lists.

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

168

Final example

The program’s idea is comparable with other entertainment programs like solitaire programs,
which also is associated with a kind of high score list. It is therefore decided that the high
score list should be developed general in order to be used in other applications. A high
score will consist of

-- a name (the user who has obtained the score)
-- a score, that is an integer
-- a time which indicates when the high score is achieved

Moreover, one must be able to specify an ordering that indicates where large values of the
score is positive or negative. A high score list must have room for a certain number of high
scores, as should be defined when the list is created.

REQUIREMENTS SPECIFICATION

The program should basically have the following functions:

1.	Play where the user has an interaction with the program and rearrange the pieces
until the square is resolved, or the user giving up.

2.	New game where the user selects a new game. This means that the pieces are shuffled
and the state of the program is set to start.

3.	Update high score list, a feature which is triggered by the program when the square
is resolved and the user’s point indicates that the user should be on the list. The
user must then enter an identification in the form of the name or an other text.

4.	Show high score list, where the user chooses to view the high score list.
5.	Choosing the difficulty level where the user must select a square size. This will

automatically result in a new game.

Regarding the high score list there are the following requirements:

1.	The high Score list shoould show the top three and thus the players who have
solved the square by moving as few pieces as possible.

2.	Each high score must consists of a name, a date and time and the number of pieces
that are moved.

3.	 It should not be possible (from the program) to delete the high score list.

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

169

Final example

169

The program’s user interface shall consist of three windows:

1.	The main window that appears when the application opens. The window displays
25 buttons corresponding to the puzzles pieces, a menu for selecting the above
functions, and a status bar at the bottom of the window, showing how many pieces
are moved.

2.	A window that opens, if a player should be on the high score list (if there are not
three players on the list, or the player’s score is better than the last one on the list).
The player should only be able to enter his name.

3.	A window that shows the high score list.

In order to illustrate the user interface, a prototype has been developed called Puzzles0. It
shows a design of the main window, and is designed as a grid consisting of 25 buttons.
Furthermore, there is a menu for program’s functions and a status bar to indicate how many
pieces are moved. The prototype has no function, and nothing happens if you click on the
pieces or select a menu item.

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

170

Final example

12.3	 DESIGN

The following is both a description of the process, and hence how I have completed the
design of the program Puzzles and partly it is a documentation of the program’s user
interface and classes.

ARCHITECTURE

The starting point for the program’s architecture is the MVC pattern, and to this is defined
the following packages (se below), where:

-- puzzles that only contains the main-class
-- puzzles.ctrls is for the controller classes
-- puzzles.dal is the data access layer, that in this case should be used to classes for

the high score list
-- puzzles.models is for the model classes
-- puzzles.tools is for helper classes
-- brikker.views is for view classes and then the program’s user interface

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

171

Final example

THE USER INTERFACE

The prototype from the analysis defines the most concerning the user interface and the main
window is not changed in relation to it and belongs to the package puzzles.views. There are
added two other windows respectively to show the high score list and for entering the name
of a new high score. Are these windows opend from the main program, the results are:

In the same manner as the prototype there is not attached functions to this windows,
and they should only show the user interface. They may thus be seen as an extension of
the prototype.

To create these windows is added a class GUI to the package puzzles.tools containing static
methods to create the user interface. These are examples of methods that could usefully be
moved to a jar file with a class library, and maybe these tools when programming should
be replaced with tools in the class library PaLib.

CLASSES

There is defined a single model class named MainModel. This class represents the game
and keep track of its state. The class will also include the program logic and in accordance
with the general guidelines for the architecture the class represents both the model and the
controller for the main window.

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

172

Final example

172

There is one algorithm, which is not obvious. One can not simply shuffle the pieces randomly
(using a random number generator) and if done, the square could not necessarily be solved.
It is therefore necessary with a strategy (an algorithm) to shuffle the pieces. The idea is to
start with a square that is solved, and then simulate random moves one of the pieces that
can be moved (there are 2, 3 or 4 options). Repeats it many times, and you get a square
where the pieces that are shuffled. The algorithm can be described as follows:

private void shuffle()
{
 // start with an ordered square
 // (r,c) refers to the blank piece – which to start is the last

 // loop over the desired number of substitutions (eg. 1000 or more)
 {
 // makes random one of the following operations
 {
 // go, if possible, a step up
 // go, if possible, a step down
 // go, if possible, a step to the left
 // go, if possible, a step to the right
 }

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://s.bookboon.com/mitas

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

173

Final example

 // if you have reached a new position, swapped this piece of the blanks
 // and to start the next iteration based on the new position of the blank
 }
}

The high Score list is defined by two classes defined in the package puzzles.dal:

To solve the problem with the ordering of the high score objects the class Highscore is
defined abstract and programs that use the high score list, therefore must define a derived
class that implements compareTo(Highscore hs). The two classes are shown below, where the
comments are removed:

package puzzles.dal;

import java.util.*;
import java.io.*;
public abstract class Highscore implements
Comparable<Highscore>, Serializable
{
 private String name; // the name of the person who has achieved this score
 private int score; // the current score
 private Calendar time; // when this score is obtained

 public Highscore(String name, int score)
 {
 this.name = name;
 this.score = score;
 time = Calendar.getInstance();
 }
}

package puzzles.dal;

import java.util.*;
import java.io.*;

public class HighscoreList implements Iterable<Highscore>, Serializable
{
 private List<Highscore> list = new ArrayList();
 private int size;

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

174

Final example

 public HighscoreList(int size)
 {
 this.size = size;
 }

 public boolean addToList(int score)
 {
 throw new UnsupportedOperationException();
 }

 public boolean add(String name, int score)
 {
 throw new UnsupportedOperationException();
 }

 public Iterator<Highscore> iterator()
 {
 return list.iterator();
 }
}

The high score list has to be saved by ordinary object serialization. It provides a problem in
terms of where the files should be saved. It has been decided that the files should be saved
in a folder under /var/local/srv/data where this folder must exist with write access.

12.4	 PROGRAMMING

The programming includes writing the code for the application itself (see below). It has
been decided not to use the class library PaLib and keep the class GUI with methods to
the user interface. Similarly, it is left to the class HighscoreList to serialize and deserialie the
objects. The finall classes (types) are as follows:

puzzles.tools

-- GUI, which is a class with static helper methods to design of the user interface.

puzzles.views

-- MainWindow, that represents the main window and concerning layout it is essentially
unchanged from the prototype of the analysis. The class is expanded with the
necessary event handling.

-- Options, which defines constants for the user interface. In this case, it are only fonts.
-- ScoreDialog, that is a dialog box for entering the name of a player to be on the high

score list. The window has the same look as shown in the design, but the code is
changed to ensure a more stable layout.

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

175

Final example

175

-- ScoresDialog, there is a dialog box that shows the high score list. The window has
the same look as shown in the design, but the code is changed to ensure a more
stable layout.

puzzles.ctrls

-- MainController, which is a controller class to the main window. This class is in this
case trivial and is most included to comply with the MVC.

-- ScoreController, there are controller class for ScoreDialog. The class’s constructor
validates whether a user should be on the high score list and if so opens a ScoreDialog.

-- ScoresController, that is controller class to ScoresDialog.

puzzles.models

-- MainModel, that is the model for MainWindow. The class also implements the
logic of the game.

-- PuzzlesScore, that is extended from Highscore and is a concrete Highscore class.
-- MoveListener, that is an interface, that defines an observer for changes in the state

of the model.
-- SolveListener, that is an interface, that defines an observer for solving the square.

http://s.bookboon.com/IE

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

176

Final example

puzzles.dal

-- Highscore, that is an abstract class, that represents a high score. The class is abstract,
because it defines but not implements the interfacet Comparable<Highscore>.

-- HighscoreList, that defines a high score list and serialize and deserialize Highscore
objects.

To test that the program works, the folowing must be validated:

-- is the model created correct and are the pices shuffled sensibly
-- are the pieces moved correctly
-- can the square be solved and are the players added to the high score lists in the

right order
-- works the function New game
-- is it possible to select a new difficulty level
-- can the high score lists be shown
-- shows About Puzzles the correct window
-- is the program’s look and feel at it should be

The first point is best solved by playing the game.

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

177

Final example

The next points can only be tested by using the program and thus play the game. It is
relatively simple to test the 3 × 3 to 5 × 5 squares, but the 7 × 7 or 9 × 9, it is more difficult
since it takes a long time to solve the square. You can solve this problem by changing the
loop in the method shuffle() so that it only takes one or a few exchanges.

The last point can only be tested in collaboration with the user and get his agreement that
the user interface is satisfactory.

12.5	 TEST

When a program is finished, it must be tested in real environments and any of other than
the programmer. In this case there is not much to do in the finally test, because the program
does not have to communicate with other programs, but the program must of course be
tested, and it must be in correct user environment.

In this case, you can create a folder somewhere on your hard drive and then copy the
program’s jar file to that folder and start the program from a prompt. Then there is not
much else to do than to play and try to solve the squares. Here you must pay particular
attention to the high score list, and the players are correctly added to the lists. In addition,
you must have an eye on the visual, and if all looks as it should do. Specifically, you can
use the following test cases:

1.	Set the level to a et 3 × 3 square
2.	Solve the square and add the user to the high score list
3.	Solve the square again, but this time with many swap, such that the user get a

high score with many moves
4.	Solve the square a third time
5.	Show the high score list and examine whether the three players are correctly inserted
6.	Solve squares until another player is added to the high score list
7.	Display the high score list to ensure that the last player is properly inserted
8.	Repeat the above with a 5 × 5 square
9.	Manually delete the two files to high score lists

10.	Display the high score lists for both a 3 × 3 and 5 × 5 square and ensure that they
are empty

If these test cases are performed satisfactorily, I will consider the program as tested and
ready to use.

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

178

Final example

12.6	 THE LAST STEP

As the last part of the task that must be written a script that can install the software on a
computer. As the first I’ve drawn an icon for the program

that I have called puzzles.png. Then I have created a directory named puzzles that contains
the program’s jar file and the above icon and the following script. To install the program
you must then make the directory puzzles to the current directory and execute the script as

sudo ./puzzles.sh

This will create the necessary directories and the program is copied to /usr/local/games and
you get an icon on the desktop that refers to the program. The script is as follows:

#!/bin/bash
DIR=$(pwd)
cd /var/local
if [-d srv]
then
 cd srv
 if [-d data]
 then
 cd data
 else
 mkdir data
 fi
else
 mkdir srv
 cd srv
 mkdir data
 cd data
fi
if [-d highscores]
then
 rm highscores/* 2> /dev/null
else
 mkdir highscores
fi
cd "$DIR"
cp Puzzles.jar /usr/local/games

JAVA 4: JAVA’S TYPE SYSTEM
AND COLLECTION CLASSES

179

Final example

cp puzzles.png /usr/local/games
cd /usr/local/bin
echo 'java -jar /usr/local/games/Puzzles.jar' > puzzle
chmod 755 puzzle
cd /usr/share/applications
echo '[Desktop Entry]' > puzzles.desktop
echo 'Name=Puzzles' >> puzzles.desktop
echo 'Exec=puzzle' >> puzzles.desktop
echo 'Icon=/usr/local/games/puzzles.png' >> puzzles.desktop
echo 'Type=Application' >> puzzles.desktop
echo 'Categories=Games' >> puzzles.desktop
echo 'Encoding=UTF-8' >> puzzles.desktop

It is a relatively simple script, but short the following takes place on the condition that the
current directory is the directory with the script, and the jar file and the icon:

1.	 the name of the directory is stored in a variable named DIR
2.	 the current directory is changed to /var/local
3.	here is created a subdirectory srv, if it does not already exist, and here again a

subdirectory data
4.	 if data has a subdirectory highscores delete all files in this directory, and otherwise

create a subdirectory highscores
5.	 the current directory is change to the directory stored in DIR
6.	 the jar file and the icon are copied to /usr/local/games
7.	 current directory is changed to /usr/local/bin
8.	here is created a simple script (only one line) containing the start command
9.	 for this script the rights is set so that everyone has read og execute

10.	the current directory is changed to /usr/share/applications
11.	here the script creates a file named puzzles.desktop, and it’s the commands in that

file that creates an icon for the program

	Foreword
	1	Introduction
	2	Wrapper classes
	Exercise 1

	3	Strings
	3.1	StringBuilder
	3.2	StringTokenizer
	Problem 1
	3.3	Regular expressions
	Exercise 2

	4	Inner classes
	4.1	Iterators
	Exercise 3
	Exercise 4
	4.2	Example: ZipCodes

	5	Enumerations
	Exercise 5
	Problem 2

	6	Exception handling
	6.1	Checked exceptions
	6.2	Unchecked exceptions
	Exercise 6

	7	Generic types
	Exercise 7
	7.1	More on parameters
	Exercise 8
	7.2	Raw classes
	7.3	Generic methods
	Exercise 9
	Problem 3
	7.4	Bound parameter types
	Exercise 10
	7.5	Generic types and inheritance

	8	Lambda expressions
	8.1	Anonymous classes
	8.2	Methods as parameters
	8.3	Examples of lambda expressions
	8.4	Java functional interfaces
	8.5	Event handlers

	9	Collection classes
	9.1	Overview of the collection classes
	9.2	ArrayList
	9.3	LinkedList
	Exercise 10
	Problem 3
	9.4	HashSet
	9.5	TreeSet
	Exercise 11
	9.6	HashMap and TreeMap
	9.7	PriorityQueue
	Exercise 12
	9.8	The algoritms
	Exercise 12

	10	Annotation
	11	Packages
	12	Final example
	12.1	The task
	12.2	Analysis
	12.3	Design
	12.4	Programming
	12.5	Test
	12.6	The last step

