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First – order orthotropic shear deformation equations for the 

nonlinearly elastic bending response of rectangular plates are 

introduced. Their solution using a computer program based on finite 

differences implementation of the Dynamic Relaxation (DR) method 

is outlined. The convergence and accuracy of the DR solutions for 

elastic large deflection response of isotropic, orthotropic, and 

laminated plates are established by comparison with various exact 

and approximate solutions. The present Dynamic   Relaxation 

method (DR) coupled with finite differences method shows a fairly 

good agreement with other analytical and numerical methods used in 

the verification scheme. It was found that: The convergence and 

accuracy of the DR solution are dependent on several factors 

including boundary conditions, mesh size and type, fictitious 

densities, damping coefficients, time increment and applied load. 

Also, the DR large deflection program using uniform finite 

differences meshes can be employed in the analysis of different 

thicknesses for isotropic, orthotropic or laminated plates under 

uniform loads. All the comparison results for simply supported (SS4) 

edge conditions showed that deflection is almost dependent on the 

direction of the applied load or the arrangement of the layers. 

 

 

Keywords 
Deflection 

Laminated Composite Plates 

Dynamic Relaxation Method 

Copyright © 2017 the Author. Published by ScienceScholar Inc. This is an 

open access article under the CC-BY-SA license 

(https://creativecommons.org/licenses/by/4.0/) 

All rights reserved. 

 

Corresponding Author at: 
First Author,  

Department of Mechanical Engineering, Faculty of Engineering and Technology, Nile Valley University, 

Atbara, Sudan 

Email address : osamamm64@gmail.com, osamamm64@hotmail.com  
 

 

 

 

 

 

 

                                                           
a Nile Valley University, Atbara, Sudan 

http://sciencescholar.us/journal/index.php/ijpse
http://dx.doi.org/10.21744/ijpse.v1i1.5
http://sciencescholar.us/
https://creativecommons.org/licenses/by/4.0/
mailto:osamamm64@gmail.com
mailto:osamamm64@hotmail.com
http://crossref.org/crossmark/


   International Journal of Physical Sciences and Engineering (IJPSE) 

IJPSE  Vol. 1 No. 1, January-April 2017, pages: 35~46 

36 

 ملخص

. يتم تأطير حل هذه (FSDT)في هذا البحث تم استخدام معادلات تشوهات القص ذات الرتبة الأولي المتباينة الخواص في اتجاهين متعامدين

. يتم تأسيس  (DR)المعادلات بإستخدام برنامج حاسوب مؤسس على تطبيق الفروقات المحددة بالازدواج مع أسلوب الاسترخاء الديناميكي 

تعامدين، لألواح ذات انحرافات كبيرة مرنة متشابهة الخواص، متبانية الخواص فى أتجاهين م (DR)تقارب ودقة حلول الإسترخاء الديناميكي 

المقترن بأسلوب  (DR)وألواح شرائحية ذات عدة طبقات بمقارنة النتائج بعدة حلول مضبوطة وتقريبية. يظهر أسلوب الإسترخاء الديناميكي 

 الفروقات المحددة توافقاً مقبولاً مع أساليب تحليلية وعددية متباينة.

ناميكي يعتمد على عدة عوامل تشمل الشروط الحدية، التقسيمات الشبكية للوح وجد في هذه الدراسة أن تقارب ودقة حل أسلوب الإسترخاء الدي

رخاء فى أتجاهين متعامدين ونوعها، الكثافات الوهمية، معاملات الاخماد، الزيادة الزمنية والحمل المسلط. أيضاً يمكن إستخدام برنامج الإست

الخواص فى أتجاهين متعامدين، وألواح ذات عدة طبقات تحت أحمال منتظمة فى تحليل ألواح متشابهة الخواص، ومتباينة  (DR)الديناميكي 

 لثخانات متباينة.

 أوضحت جميع نتائج المقارنة لحالة الإسناد البسيط الطرفي أن الإنحراف يعتمد اساسياً على أتجاه الحمل المسلط أو ترتيبة الطبقات.

 

Notation 

 

a, b   plate side lengths in x and y directions respectively. 

 6,2,1, jiA ji  Plate in plane stiffness. 

5544 , AA    Plate transverse shear stiffness. 

 6,2,1, jiD ji  Plate flexural stiffness. 


yxyx   Mid – plane direct and shear strains 


zyzx  ,   Mid – plane transverse shear strains. 

1221 ,, GEE  In – plane elastic longitudinal, transverse and shear moduli. 

2313,GG  Transverse shear moduli in the x – z and y – z planes respectively. 

yxyx MMM ,,  Stress couples. 

yxyx MMM ,,  Dimensionless stress couples. 

yxyx NNN ,,  Stress resultants. 

yxyx NNN ,,  Dimensionless stress resultants. 

q  Dimensionless transverse pressure. 

yx QQ ,  Transverse shear resultants. 

vu,  In – plane displacements. 

w  Deflections 

w Dimensionless deflection 

zyx ,,  Cartesian co – ordinates. 

 t Time increment 

,  Rotations of the normal to the plate mid – plane  

yx  Poisson’s ratio 

  ,,,, wvu In plane, out of plane and rotational fictitious densities. 


zxyx  ,,  Curvature and twist components of plate mid – plane   

 

Introduction 
Composites were first considered as structural materials a little more than half a century ago. From that 

time to now, they have received increasing attention in all aspects of material science, manufacturing 

technology, and theoretical analysis. 

The term composite could mean almost any thing if taken at face value, since all materials are composites 

of dissimilar subunits if examined at close enough details. But in modern engineering materials, the term 

usually refers to a matrix material that is reinforced with fibers. For instance, the term “FRP” which refers to 

Fiber Reinforced plastic, usually indicates a thermosetting polyester matrix containing glass fibers, and this 

particular composite has the lion’s share of today commercial market. 
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In the present work, a numerical method known as Dynamic Relaxation (DR) coupled with finite 

differences is used. The DR method was first proposed in 1960s and then passed through a series of studies to 

verify its validity by Turvey and Osman Refs. [4], [8] and [9] and Rushton [2], Cassel and Hobbs [10], and 

Day [11]. In this method, the equations of equilibrium are converted to dynamic equations by adding 

damping and inertia terms. These are then expressed in finite difference form and the solution is obtained 

through iterations. The optimum damping coefficient and time increment used to stabilize the solution 

depend on a number of factors including the matrix properties of the structure, the applied load, the boundary 

conditions and the size of the mesh used. 

Numerical techniques other than the DR include finite element method, which widely used in the present 

studies i.e. of Damodar R. Ambur et al [12], Ying Qing Huang et al [13], Onsy L. Roufaeil et al [14]… etc. 

In a comparison between the DR and the finite element method, Aalami [15] found that the computer time 

required for finite element method is eight times greater than for DR analysis, whereas the storage capacity 

for finite element analysis is ten times or more than that for DR analysis. This fact is supported by putcha and 

Reddy [16] who noted that some of the finite element formulations require large storage capacity and 

computer time. Hence, due to less computations and computer time involved in the present study. The DR 

method is considered more efficient than the finite element method. In another comparison Aalami [15] 

found that the difference in accuracy between one version of finite element and another may reach a value of 

10% or more, whereas a comparison between one version of finite element method and DR showed a 

difference of more than 15%. Therefore, the DR method can be considered of acceptable accuracy. The only 

apparent limitation of DR method is that it can only be applied to limited geometries. However, this 

limitation is irrelevant to rectangular plates which are widely used in engineering applications. 

The Dynamic Relaxation (DR) program used in this paper is designed for the analysis of rectangular 

plates irrespective of material, geometry, edge conditions. The functions of the program are to read the file 

data; compute the stiffness of the laminate, the fictitious densities, the velocities and displacements and the 

mid – plane deflections and stresses; check the stability of the numerical computations, the convergence of 

the solution, and the wrong convergence; compute through – thickness stresses in direction of plate axes; and 

transform through – thickness stresses in the lamina principal axes. 

The convergence of the DR solution is checked at the end of each iteration by comparing the velocities 

over the plate domain with a predetermined value which ranges between 
910

 for small deflections and 
610
for large deflections. When all velocities are smaller than a predetermined value, the solution is deemed 

converged and consequently the iterative procedure is terminated. Sometimes DR solution converges to an 

invalid solution. To check for that the profile of the variable is compared with an expected profile over the 

domain. For example, when the value of the function on the boundaries is zero, and it is expected to increase 

from edge to center, then the solution should follow a similar profile. When the computed profile is different 

from the expected values, the solution is considered incorrect and can hardly be made to converge to the 

correct value by altering the damping coefficients and time increment. Therefore, the boundary conditions 

should be examined and corrected if they are improper. 

The errors inherent in the DR technique include the discretization error which is due to the replacement of 

a continuous function with a discrete function, and there is an additional error because the discrete equations 

are not solved exactly due to the variations of the velocities from the edge of the plate to the center. Finer 

meshes reduce the discretization error, but increase the round – off error due to the large number of 

calculations involved. 

 

Methods and Analysis 
Large Deflection Theory 

The equilibrium, strain, constitutive equations and boundary conditions are introduced below without 

derivation 

 

Equilibrium Theory 
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Strain Equations 

 

 The large deflection strains of the mid – plane of the plate are as given below: 
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The Constitutive Equations 

 

The laminate constitutive equations can be represented in the following form: 
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Where iN denotes xN  , yN  and yxN  and iM  denotes xM , yM  and yxM . jiA , jiB  and jiD  

 6,2,1, ji  are respectively the membrane rigidities, coupling rigidities and flexural rigidities of the plate. 


j  Denotes 

yx 




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,  and

xy 





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. 4544, AA  And 55A  denote the stiffness Coefficients and are 

calculated as follows:- 
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Where 
ji

c the stiffness of a lamina is referred to the plate principal axes, and 
i

k  , 
j

k  are the shear 

correction factors. 
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Boundary Conditions 

Four sets of simply supported boundary conditions are used in this paper, and are denoted as SS1, SS2, 

SS3, and SS4 as has been shown in Fig. (1) Below. 

 

Dynamic Relaxation of the Plate Equations 

An exact solution of the plate equations is obtained using finite differences coupled with dynamic 

relaxation method. The damping and inertia terms are added to equations (1). Then the following 

approximations are introduced for the velocity and acceleration terms: 
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Fig. (1)  Simply supported boundary conditions 
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In which  ,,,, wvu . Hence equations (1) become: 
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The superscripts a and b in equations (4) and (5) refer respectively to the values of velocities after and before 

the time increment t  and
1*

2

1    tkk . The displacements at the end of each time increment, t , 

are evaluated using the following integration procedure:  
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Thus equations (5), (6), (2) and (3) constitute the set of equations for solution. The DR procedure operates as 

follows: 

(1) Set initial conditions. 

(2) Compute velocities from equations (5). 

(3) Compute displacement from equation (6). 

(4) Apply displacement boundary conditions. 

(5) Compute strains from equations (2). 

(6)  Compute stress resultants and stress couples from equations (3). 

(7) Apply stress resultants and stress couples boundary conditions. 

(8) Check if velocities are acceptably small (say
610

). 

(9) Check if the convergence criterion is satisfied, if it is not repeat the steps from 2 to 8. 

It is obvious that this method requires five fictitious densities and a similar number of damping 

coefficients so as the solution will be converged correctly.  

 

Verification of the Numerical Technique 

 Table (1) shows deflections, stress resultants and stress couples in simply supported in – plane free (SS2) 

isotropic plate. The present results have been computed with 66  uniform meshes. These results are in a 

fairly good agreement with those of Aalami et al [1] using finite difference method (i.e. for deflections, the 

difference ranges between 0.35% at 8.20q  and 0 % as the pressure is increased to 97). A similar 

comparison between the two results is shown in Table (2) for simply supported (SS3) condition. It is apparent 

that the center deflections, stress couples and stress resultants agree very well. The mid – side stress 

resultants do not show similar agreement whilst the corner stress resultants show considerable differences. 

This may be attributed to the type of mesh used in each analysis. A set of thin plate results comparisons 

presented here with Rushton [2] who employed the DR method coupled with finite olifferences. The present 

results for simply supported (SS4) square plates were computed for two thickness ratios using a 88  

uniform mesh are listed in table (3). In this instant, the present results differ slightly from those found in Ref. 

[2]. Another comparison for simply supported (SS4) square isotropic plates subjected to uniformly 

distributed loads are shown in Tables (4) and (5) respectively for deflection analysis of thin and moderately 

thick plates. In this comparison, it is noted that, the centre deflection of the present DR analysis, and those of 

Azizian and Dawe [3] who employed the finite strip method are in fairly good agreement (i.e. with a 

maximum error not exceeding 0.09%). 
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A large deflection comparison for orthotropic plates was made with the DR program. The results are 

compared with DR results of Turvey and Osman [4], Reddy’s [5], and Zaghloul et al results [6]. For a thin 

uniformly loaded square plate made of material I which its properties are stated in Table (6) and with simply 

supported in – plane free (SS2) edges. The center deflections are presented in Table (7) where DR showed a 

good agreement with the other three. 

A large deflection comparison for laminated plates was made by recomposing sun and chin’s results [7] 

for [ 

44 0/90 ] using the DR program and material II which its properties are cited in Table (6). The results 

were obtained for quarter of a plate using a 55  square mesh, with shear correction factors

6/52

5

2

4  kk . The analysis was made for different boundary conditions and the results were shown in 

Tables (8), and (9) as follows: The present DR deflections of two layer antisymmetric cross – ply simply 

supported in – plane fixed (SS4) are compared with DR results of Turvey and Osman [8] and with sun and 

chin’s values for a range of loads as shown in Table (4-8). The good agreement found confirms that for 

simply supported (SS4) edge conditions, the deflection depends on the direction of the applied load or the 

arrangement of the layers. Table (9) shows a comparison between the present DR, and DR Ref. [8] results, 

which are approximately identical. The difference between laminates   90/0  and   0/90  at 

5/ ab  is 0.3% whilst it is 0% when 1/ ab .  

The comparison made between DR and alterative techniques show a good agreement and hence the 

present DR large deflection program using uniform finite difference meches can be employed with 

confidence in the analysis of moderately thick and thin flat isotropic, orthotropic or laminated plates under 

uniform loads. The program can be used with the same confidence to generate small deflection results. 

 

Table (1) comparison of present DR, Aalami and Chapman’s [1] large deflection results for simply 

supported (SS2) square isotropic plate subjected to uniform pressure  3.0,02.0/  vah  

  

q  S  cw  
 

 2

1

y

x

M

M
 

 

 2

1

y

x

N

N
 

20.8 
1 

2 

0.7360 

0.7386 

0.7357 

0.7454 

0.7852 

0.8278 

41.6 
1 

2 

1.1477 

1.1507 

1.0742 

1.0779 

1.8436 

1.9597 

63.7 
1 

2 

1.4467 

1.4499 

1.2845 

1.2746 

2.8461 

3.0403 

97.0 
1 

2 

1.7800 

1.7800 

1.4915 

1.4575 

4.1688 

4.4322 

 

S (1): present DR results ( 66  uniform mesh over quarter of the plate) 

S (2): Ref. [1] results ( 66 graded mesh over quarter of the plate) 

 

 

 

Table (2) Comparison of present DR, Aalami and Chapman’s [1] large 

deflection results for simply supported (SS3) square isotropic plate subjected to uniform pressure 

 3.0,02.0/  vah  

 

q  S  cw  
 

 1

1

y

x

M

M
 

 

 1

1

y

x

N

N
 

 

 3

2

y

x

N

N
 

 

 2

3

y

x

N

N
 

 

 4

4

y

x

N

N
 

20.8 
1 

2 

0.5994 

0.6094 

0.6077 

0.6234 

1.0775 

1.0714 

0.2423 

0.2097 

1.1411 

1.1172 

0.1648 

0.2225 

41.6 
1 

2 

0.8613 

0.8783 

0.8418 

0.8562 

2.2435 

2.2711 

0.5405 

0.4808 

2.4122 

2.4084 

0.3177 

0.4551 

  0,
2

1
1  zayx
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63.7 
1 

2 

1.0434 

1.0572 

0.9930 

1.0114 

3.3151 

3.3700 

0.8393 

0.7564 

3.6014 

3.6172 

0.4380 

0.6538 

97.0 
1 

2 

1.2411 

1.2454 

1.1489 

1.1454 

4.7267 

4.8626 

1.2604 

1.1538 

5.1874 

2.2747 

0.5706 

0.9075 

 

S (1): present DR results ( 66  uniform mesh over quarter of the plate) 

S (2): Ref. [1] results ( 66 graded mesh over quarter of the plate) 

  0)4(;0,
2

1
,0)3(;0,

2

1
)2(;0,

2

1
1  zyxzayxzyaxzayx  

 

Table (3) Comparison of present DR, and Rushton’s [2] large deflection results for simply supported 

(SS4) square isotropic plate subjected to uniform pressure  3.0v  

 

q  S  cw   11  

8.2 

1 

2 

3 

0.3172 

0.3176 

0.2910 

2.3063 

2.3136 

2.0900 

29.3 

1 

2 

3 

0.7252 

0.7249 

0.7310 

5.9556 

5.9580 

6.2500 

91.6 

1 

2 

3 

1.2147 

1.2147 

1.2200 

11.3180 

11.3249 

11.4300 

293.0 

1 

2 

3 

1.8754 

1.8755 

1.8700 

20.749 

20.752 

20.820 

 

S (1): present DR results ( 88;02.0/ ah  uniform mesh over quarter of the plate) 

S (2): present DR results ( 88;01.0/ ah uniform mesh over quarter of the plate)  

S (3): Ref. [2] results (thin plate 88  uniform mesh over quarter of the plate) 

  hzayx
2

1
,

2

1
1   

 

Table (4) Comparison of the present DR, and Azizian and Dawe’s [3] large deflection results for thin 

shear deformable simply supported (SS4) square isotropic plate subjected to uniform pressure 

 3.0,01.0/  vah  

 

q  S  cw  

9.2 
1 

2 

0.34693 

0.34677 

36.6 
1 

2 

0.80838 

0.81539 

146.5 
1 

2 

1.45232 

1.46250 

586.1 
1 

2 

2.38616 

2.38820 

 

S (1): present DR results ( 66 uniform mesh over quarter of the plate) 

S (2): Azizian and Dawe [3] results. 
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Table (5) Comparison of the present DR, and Azizian and Dawe’s [3] large deflection results for 

moderately thick shear deformable simply supported (SS4) square isotropic plates subjected to 

uniform pressure  3.0,05.0/  vah  

 

 

q  S  cw  

0.92 
1 

2 

0.04106 

0.04105 

4.6 
1 

2 

0.19493 

0.19503 

6.9 
1 

2 

0.27718 

0.27760 

9.2 
1 

2 

0.34850 

0.34938 

 

S (1): present DR results ( 66 uniform mesh over quarter of the plate) 

S (2): Azizian and Dawe [3] results. 

 

Table (6) Material properties used in the orthotropic and laminated plate comparison analysis. 

 

Material 
21 / EE  22 / EG  213 / EG  

223 / EG  
12   2

5

2

4 kkSCF   

I 2.345 0.289 0.289 0.289 0.32 6/5  

II 14.3 0.5 0.5 0.5 0.3 6/5  

 

 

Table (7) Comparison of present DR, DR results of Ref. [4], finite element results Ref. [5] and 

experimental results Ref. [6] for a uniformly loaded simply supported (SS2) square orthotropic plate 

made of material I  0115.0/ ah  

 

q   1cw   2cw   3cw   4cw  

17.9 0.5859 0.5858 0.58 0.58 

53.6 1.2710 1.2710 1.30 1.34 

71.5 1.4977 1.4977 1.56 1.59 

89.3 1.6862 1.6862 1.74 1.74 

 

S (1): present DR results ( 55  uniform non – interlacing mesh over quarter of the plate). 

S (2): DR results of Ref. [4]. 

S (3): Reddy’s finite element results [5]. 

S (4): Zaghloul’s and Kennedy’s Ref. [6] experimental results as read from graph. 

 

Table (8) Deflection of the center of a two – layer anti symmetric cross ply simply supported in – plane 

fixed (SS4) strip under uniform pressure  01.0/,5/  ahab  

 

q  S    90/01w    0/902w   0jiBw   1%   2%   3%  

81 

8 

2 

3 

0.6851 

0.6824 

0.6800 

0.2516 

0.2544 

0.2600 

0.2961 

131.4 

130.5 

- 15.0 

- 14.1 

172.3 

168.2 

33 

8 

2 

3 

0.8587 

0.8561 

0.8400 

0.3772 

0.3822 

0.3900 

0.4565 

88.1 

87.5 

- 17.4 

- 16.3 

127.7 

124.0 
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22 

8 

2 

3 

1.0453 

1.0443 

1.0400 

0.5387 

0.5472 

0.5500 

0.6491 

61.0 

60.9 

- 17.0 

- 15.7 

94.0 

90.8 

801 

8 

2 

3 

1.1671 

1.1675 

1.1500 

0.6520 

0.6630 

0.6600 

0.7781 

50.0 

50.0 

- 16.2 

- 14.8 

79.0 

76.1 

 

S (1): present DR results  

S (2): DR results Ref. [8]. 

S (3): Values determined from sun and chin’s results Ref. [7]. 

(1):    www /100 1   

(2):    www /100 2   

(3):   221 /100 www   

 

Table (9) Center deflection of two – layer anti – symmetric cross – ply simply supported in – plane free 

(SS1) plate under uniform pressure and with different aspect ratios  18;01.0/  qah . 

 

ab /  S    90/01w    0/902w   0jiBw   1%   2%   3%  

2.5 
1 

2 

0.8325 

0.8328 

0.8422 

0.8424 

0.3907 

0.3907 

113.1 

113.2 

115.6 

115.6 

- 1.15 

- 1.1 

2.0 
1 

2 

0.7707 

0.7712 

0.7796 

0.7799 

0.3807 

0.3807 

102.4 

102.6 

104.8 

104.9 

- 1.14 

- 1.1 

1.75 
1 

2 

0.7173 

0.7169 

0.7248 

0.7251 

0.3640 

0.3640 

97.0 

97.0 

99.1 

99.2 

- 1.0 

- 1.1 

1.5 
1 

2 

0.6407 

0.6407 

0.6460 

0.6455 

0.3335 

0.3325 

92.1 

92.7 

93.7 

94.1 

- 0.82 

- 0.70 

1.25 
1 

2 

0.5324 

0.5325 

0.5346 

0.5347 

0.2781 

0.2782 

91.4 

91.4 

92.2 

92.2 

- 0.4 

- 0.4 

1.0 
1 

2 

0.3797 

0.3796 

0.3797 

0.3796 

0.1946 

0.1949 

95.1 

94.8 

95.1 

94.8 

0.0 

0.0 

 

S (1): present DR results  

S (2): DR results Ref. [8]. 
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(3):   221 /100 www   

 

Conclusion 
A Dynamic relaxation (DR) program based on finite differences has been developed for large deflection 

analysis of rectangular laminated plates using first order shear deformation theory (FSDT). The 

displacements are assumed linear through the thickness of the plate. A series of new results for uniformly 

loaded thin, moderately thick, and thick plates with simply supported edges have been presented. Finally a 

series of numerical comparisons have been undertaken to demonstrate the accuracy of the DR program. 

These comparisons show the following:- 

1.  The convergence of the DR solution depends on several factors including boundary conditions, 

meshes size, fictitious densities and applied load. 

2.  The DR large deflection program using uniform finite differences meshes can be employed with 

confidence in the analysis of moderately thick and flat isotropic, orthotropic or laminated plates under 

uniform loads. 

3.  The DR program can be used with the same confidence to generate small deflection results. 

4.  The time increment is a very important factor for speeding convergence and controlling numerical 

computations. When the increment is too small, the convergence becomes tediously slow; and when it 
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is too large, the solution becomes unstable. The proper time increment in the present study is taken as 

0.8 for all boundary conditions. 

5.  The optimum damping coefficient is that which produces critical motion. When the damping 

coefficients are large, the motion is over – damped and the convergence becomes very slow. At the 

other hand when the coefficients are small, the motion is under – damped and can cause numerical 

instability. Therefore, the damping coefficients must be selected carefully to eliminate under – 

damping and over – damping. 
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