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Instructional Objectives
1. Compare the difference between crisp set and fuzzy set.
2. Define universe of discourse and membership functions in fuzzy set theory.
3. Work through fuzzy set operations by manipulating membership functions.
4. Explain the use of linguistic operators and fuzzy reasoning.
5. Describe how fuzzy inference rules are used.
6. Explain the role of fuzzy knowledge base.
7. Describe implication functions and compositional rule of inference.
8. Sketch and describe the max-min and max-product operations on fuzzy variables.
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4.1 INTRODUCTION
Fuzzy sets was introduced by Zadeh in 1965 as a form of generalization 
of classical set theory that represents vagueness or uncertainty in 
linguistic terms. In a classical set, an element of the universe belongs to 
or does not belong to the set i.e. the membership of an element is crisp -
either yes or no. A fuzzy set allows the degree of membership for each 
element to range over the unit interval [ 0,1 ]. Crisp sets always have 
unique membership functions while every fuzzy set has an infinite 
number of membership functions that may represent it.
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EXAMPLE
In a patient age group classification used on medical treatment, the 
following age groups are defined as follows:
Youth: < 35 years.
Middle Age: 35 to 55 years.
Old Age: > 56 years.
.

Question: How do we decide for a patient that he /she is middle age ?
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4.2 FUZZY SET THEORY
For a given universe of discourse U, a fuzzy set is determined by a 
membership function that maps members of U on to a membership 
range usually between 0 and 1.

Definition
Let U be a collection of objects denoted by {u}. U is called the universe 
of discourse and u represents a generic element of U. A fuzzy set F in a 
universe of discourse U is characterized by a membership function µF
which takes values in the interval [ 0, 1 ]. Namely, µF: U ---> [ 0, 1 ].
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Membership Functions

There are 2 ways to define the membership for fuzzy sets:

• Numerical : Express the degree of membership function of a 
fuzzy set as a vector of numbers whose dimension depends on the 
level of discretization i.e. the number of discrete elements in the 
universe.
.

• Functional : Defines the membership function of a fuzzy set in 
an analytic expression that allows the membership grade for each 
element in the defined universe of discourse to be calculated.
.

• Commonly used “shapes” of membership functions are:
S-function, π-function, triangular form, trapezoid form 
and exponential form.
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Fuzzy Set Operations
Fuzzy sets are used for the systematic manipulation of vague and
imprecise concepts using fuzzy set operations performed by 
manipulating the membership functions. Let A and B be two 
point-valued fuzzy sets in universe of discourse U with 
membership functions µA and µB respectively.

Summary of Fuzzy Set Operators
.

1. Equality µA(u) = µB(u) for all u ε U.
Sets A and B are equal if they are defined on the same universe and the
membership function is the same for both.

2. Union µA ∪ B(u) = max { µA(u), µB(u) }      for all u ε U.

3. Intersection µA ∩ B(u) = min { µA(u), µB(u) }       for all u ε U.
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Summary of Fuzzy Set Operators ( continue … )
.

4. Complement µA’ (u) = 1 - µA(u) for all u ε U.
Note: If A and A’ are complements, their intersection need not be

empty set. Likewise, their union is not necessarily equal to the
universe

5. Normalization µNORM(A)(u) = µA(u) / max(µA(u))     for u ε U.
This re-scales the membership function to a maximum value of 1.

6. Algebraic product µA•B(u) = µA(u) • µB(u)      for all u ε U.

7. Disjunctive/Conjunctive normal form (DNF/CNF)
DNF(A AND B) = A ∩ B     lower bound
CNF(A OR B) = A ∪ B        upper bound

Other types of operators include concentration, dilation, 
intensification, bounded sum and bounded product.

Interval-valued
fuzzy set.
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Linguistic Operators
Fuzzy sets are able to deal with linguistic quantifiers or ‘hedges’. 
Hedges such as more or less, very, not very, slightly, etc, correspond 
to modifications in the membership function of the fuzzy set involved.

Example:
Consider a fuzzy set ‘HIGH’ in a temperature control process that is 
modified by 3 hedges: ‘very’, ‘more or less’ and ‘not very’.

u
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EXAMPLES
• Min-max operations. 1. Given R = max{min(0.1, 0.3), min(0.5, 0.7)}

then R = max{0.1, 0.5} = 0.5.

2. Given S = min{max(0.6, 0.3), max(0.9, 0.5)}
then S = min{0.6, 0.9} = 0.6

• Graphical Explanation.
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EXAMPLE
Categorizing body temperature using predicates or ‘fuzzy values’
such as hypothermia, normal, fever and high fever, either by 
common sense or by an expert’s opinion.

Fuzzy statement: Temperature is Normal.

Fuzzy variable Membership µj(x)
Adapted from Fuzzy Systems Design 
Principles by R C Berkan.
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4.3 FUZZY LOGIC

Meaning ???
.

• Involves the manipulation of fuzzy truth values such as ‘nearly true’
defined as fuzzy sets over the interval [0 , 1].

• Focus on the approaches involved in drawing conclusions from
properties defined as fuzzy sets especially in control.

Fuzzy Reasoning

Knowledge involved is expressed as rules in the form “ If x is A, 
Then y is B “, where x and y are fuzzy variables and A and B are 
fuzzy values. Statements in the antecedent or consequent parts of 
the rules may involve fuzzy logical connectives such as ‘AND’ and 
‘OR’.
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Fuzzy logic inference has similarities to human reasoning. Knowledge 
can be expressed using vague ideas such as ‘very’ and ‘plenty’. Fuzzy 
logic has the following features:
.

• Sophisticated knowledge and rich human experience can be
incorporated into fuzzy knowledge base in an almost natural language.

• The incorporated knowledge is not necessarily precise and complete.
• The input facts to be assessed in fuzzy inferences are not necessarily
clear-cut.

• Partially matched conclusions can be inferred from fuzzy facts and the
established fuzzy knowledge base.

EXAMPLE : A Typical Fuzzy Inference

Knowledge: If the water is very hot, then add plenty of cold water.
Fact: The water is moderately hot.
Conclusion: Add a little cold water.



CCA yck(Jan 2003) 15

Topic 4 - Foundations of Fuzzy Logic

4.4 FUZZY INFERENCE RULES
Fuzzy rule is often expressed in the form of ‘IF-THEN’. This is 
essentially a fuzzy relation. The fuzzy relations in a fuzzy knowledge 
base can be defined as a set of fuzzy implications or relations.

There are 2 main types of fuzzy inference rules in fuzzy logic 
reasoning namely, generalized modus ponens (GMP) and generalized
modus tollens (GMT).

GMP GMT

Premise 1:     If x is A Then y is B
Premise 2:         x is A’
Consequence:    y is B’

Premise 1:     If x is A Then y is B
Premise 2:         y is B’
Consequence:    x is A’

Backward goal-driven inferenceForward goal-driven inference

Direct reasoning Indirect reasoning

Eg: Fuzzy logic control Eg: Expert System (AI)



CCA yck(Jan 2003) 16

Topic 4 - Foundations of Fuzzy Logic

4.5 FUZZY KNOWLEDGE BASE
A fuzzy knowledge base usually consists of a number of fuzzy rules. 
In engineering control applications, the fuzzy rules are expressed as 
‘IF-THEN’ e.g. ‘IF x is A THEN y is B’. This rule is known as the 
Sugeno type rule. The objectives are:
.

• Provide the human experts with a convenient way to express their
knowledge and experience.

• Provide the designers with an easy way to construct and to program
the fuzzy rules.

• Reduce the cost of the design and provide good fuzzy inference
efficiency.

.

Sentence connectives namely ‘AND’, ‘OR’ and ‘ALSO’ are usually 
allowed. ‘AND’ is interpreted as an intersection operator, ‘OR’ as a 
union operator and ‘ALSO’ indicates the presence of multiple outputs
in the fuzzy rule



CCA yck(Jan 2003) 17

Topic 4 - Foundations of Fuzzy Logic

EXAMPLE
Determine the number of outputs in the fuzzy rule

IF   x1 is Ak1 OR x2 is Ak2 AND   x3 is Ak3
THEN   y1 is Bk1 ALSO   y2 is Bk2

Solutions: Rewrite it a simpler form.

IF   Ak1 OR Ak2 AND   Ak3       THEN   Bk1 ALSO   Bk2

antecedent consequent
There are 2 outputs in the consequent part of the rule. This type of 
fuzzy knowledge base form is called a multiple-input-multiple-
output (MIMO) system. Likewise we also have the MISO system.
The fire strength of the rule are calculated from the antecedent part.
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Implication Functions
Each rule in the fuzzy knowledge base corresponds to a fuzzy relation. 
Various approaches can be taken in determining the relation 
corresponding to a particular fuzzy rule. The common implication
functions are Mini rule (Mamdani), Product rule (Larsen), Max-min
rule (Zadeh), Arithmetic rule (Zadeh) and Boolean.

4.6 FUZZY REASONING

Consider a MISO system with N rules and the k’th rule given as:
.

IF Ak1 AND … AND Aki AND … AND Akn THEN Bk
.

The k’th fuzzy relation is expressed as Rk = Ak → Bk
.

The intersection of the antecedent  Ak1 AND … AND Aki AND 
… AND Akn can be interpreted as point-valued intersection or 
interval-valued intersection.
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To establish the overall fuzzy relation of a fuzzy knowledge base, 
fuzzy compositional operations are required to combine the 
relations expressed by each rule.

Common implication operators are:
.

1. Mamdani µR(x,y) = min[µA(x),µB(y)]
.

2. Zadeh µR(x,y) = max{min[µA(x),µB(y)], 1 - µA(x)}
.

3. Larsen µR(x,y) = µA(x) • µB(y)
.

4. Lukasiewicz µR(x,y) = min{ 1, [ 1 - µA(x) + µB(y)]}
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Compositional Rule of Inference
Compositional inference provides a medium for defining linguistic 
variables i.e. fuzzy variables that leads to the formation of fuzzy logic. The 
formation of fuzzy sets ( membership functions ) reflects a context-specific 
knowledge either acquired from an expert or from a data set. Thus, 
compositional inference is the essence of translating natural language into 
mathematics and converting the accompanying logic into mathematical 
inference computations.

Example:
Compositional
inference between
2 fuzzy variables.
Don’t invest our 
money when the 
risk is dangerously 
high.

Adapted from Fuzzy Systems Design Principles by R C Berkan.
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Point-valued Compositional Rule of Inference

This rule of inference is an approximate reasoning scheme that derives 
the consequence by combining the consequences of all rules. The main 
types of compositional operators includes max-min operation, max-
product operation, min-max operation and max-max operation, min-
min operation and max-average operation.

The basic process of this inference includes:
.

• Identify the connectives ‘AND’ and ‘OR’ in the antecedent of the rule
base. ( Note: ANDs are always performed first ).

• Find the fire strength αk for the k’th rule.
• Apply the chosen compositional operator to infer the control actions 
in the consequent of the rule base.
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EXAMPLE

Given the following rule base:

Rule 1 IF   x is A1 AND   y is B1 THEN   z is C1
Rule 2 IF   x is A2 OR y is B2 THEN   z is C2
Rule 3 IF   x is A3 AND   y is B3 THEN   z is C3

Evaluate the fuzzy reasoning process using max-min and max-
product operators given the inputs x = A’ and y = B’.
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Solutions for max-min operation:

AND

AND

OR

I’ve got the answer!

Adapted from Using Fuzzy Logic by J. Yan.

Rule 1

Rule 3

Rule 2
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Solutions for max-product operation:

AND

AND

OR

I’ve got the answer!

Adapted from Using Fuzzy Logic by J. Yan.

Rule 1

Rule 3

Rule 2
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General comments:

• Each rule will be fired with a certain fire strength.
• The fire strength of each rule is greatly affected by the connectives 
in the antecedent of each rule.

• The fuzzy control action of each rule is decided by the inferred fire
strength and the fuzzy subsets defined along the control universe of 
discourse.

• The fuzzy control action inferred from the complete set of fuzzy rule
bases is equivalent to the aggregated result derived from individual
rules.

• The inputs to the fuzzy reasoning process may be fuzzy singletons.

In fuzzy control engineering, the actual inputs are usually in a
‘crisp’ form i.e. fuzzy singletons.

If singletons are used in the example, how would the solution change ?



CCA yck(Jan 2003) 26

Topic 4 - Foundations of Fuzzy Logic

Concluding Remarks

A brief introduction to the basic concepts of fuzzy set theory and 
fuzzy logic often encountered in fuzzy logic control has been 
given in this chapter. Details on membership functions, hedges, 
fuzzy set operations, fuzzy relations and fuzzy reasoning 
techniques have been discussed.

As fuzzy set theory embraces a wide spectrum of topics, it is not 
possible to cover them all in this introductory chapter. In the 
next chapter, we will look at fuzzy logic controller in detail.
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SELF-TEST QUESTIONS

Question 1
What is the range normally used
for the membership functions in a
fuzzy set ?

(a) -1 to +1
(b) 0 to 10
(c) 0 to 1
(d) Arbitrary depending on user.

Question 2
What is actually the universe of
discourse in fuzzy set ?

(a) A collection of fuzzy values.
(b) A type of number.
(c) A formula to compute gravity.
(d) A set of all crisp values.
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Question 3

Indicate TRUE or FALSE for the following statements.

• The degree of membership for a fuzzy set can be expressed in an
analytic expression or as a vector of numbers.

• The fuzzy set operator union can be represented as µAUB(u) =   
max { µA(u), µB(u) }.

• The solution to R = max{min(0.3, 0.5), max (0.1, 0.9)} is 0.1.

•Fuzzy logic involves the manipulation of fuzzy truth values 
defined as fuzzy sets over the interval [-1,1].

•The ‘IF-THEN’ fuzzy rule is essentially a fuzzy relation found in 
a fuzzy knowledge base.

•The Mamdani operator is given by µR(x,y) = min[µA(x),µB(y)]
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Question 4

How many system inputs and outputs are there for the following  
fuzzy rule shown:

IF x is A1 AND y is B2 AND z is C1 THEN k is D1

Number of inputs = _____, Number of outputs = _____.

Question 5

Sketch the triangular membership function Tr(u:1,3,5) and 
trapeziodal membership function Tp(u:3,4,9,10). 

Tr(u:1,3,5) Tp(u:3,4,9,10)
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Question 6

List down the 3 basic process in applying to rule of inference to fuzzy 
rules. Identify the connectives used in the following rule:

IF x is A2 AND y is B1 OR z is C3 THEN k is D1 ALSO m is E4.

Answer:

1.

2.

3.

Connectives are: ________________________________________


