
ةثيدحلا++Cةغلبةجمربلاملعتةلسلس
Learn Modern C++ Programming Course

بيدلادمحأسدنهملادادعإ



#37: Derived Classes P2



Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup

Access to Base Classes

Base
Public

Protected
Private

Derived
Public

Protected
Private

Base
Public

Protected
Private

Base
Public

Protected
Private

Derived
Public

Protected
Private

Derived
Public

Protected
Private

Private Protected Public



Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup

Virtual Functions
Virtual functions overcome the problems with the 
type-field solution by allowing the programmer to 
declare functions in a base class that can be 
redefined in each derived class. The compiler and 
linker will guarantee the correct correspondence 
between objects and the functions applied to them.

class Employee {
public:
Employee(std::string name, std::string title) : _name{name}, _title{title} {}
virtual void print() const;

private:
std::string _name;
std::string _title;

};

class Manager : public Employee {
public:
Manager(std::string name, std::string title, int level)

: Employee(name, title), _level{level} {}
void add_managed(Employee* managed) { list.push_back(managed); }
void print() const override;

private:
std::vector<Employee*> list; // people managed
int _level;

};

void print(Employee* emp) { emp->print(); }

int main() {
//
Employee ramy{"Ramy", "SW Engineer"};
Employee hady{"Hady", "SW Engineer"};
Manager fady{"Fady", "SW Manager", 2};

fady.add_managed(&ramy);
fady.add_managed(&hady);

print(&ramy);
print(&fady);

}

A function from a derived class with the same name and the same set of argument types as a virtual
function in a base is said to override the base class version of the virtual function. Furthermore, it
is possible to override a virtual function from a base with a more derived return type.



Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup

Virtual Functions
• A virtual function must be defined for the class in which it is first declared 

(unless it is declared to be a pure virtual function).
• A virtual function can be used even if no class is derived from its class, 

and a derived class that does not need its own version of a virtual 
function need not provide one.



Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup

Polymorphism
• Getting the right behavior from Employee’s functions independently of 

exactly what kind of Employee is actually used is called polymorphism. A 
type with virtual functions is called a polymorphic type or (more precisely) 
a run-time polymorphic type.

• To get runtime polymorphic behavior in C++, the member functions called 
must be virtual and objects must be manipulated through pointers or 
references.



Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup

Virtual Function Table
• Clearly, to implement polymorphism, the compiler must store some kind 

of type information in each object of class Employee and use it to call the 
right version of the virtual function print(). In a typical implementation, the 
space taken is just enough to hold a pointer.

• The usual implementation technique is for the compiler to convert the 
name of a virtual function into an index into a table of pointers to 
functions. That table is usually called the virtual function table or simply 
the vtbl. Each class with virtual functions has its own vtbl identifying its 
virtual functions.



Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup

Virtual Function Table
class Base {
public:
virtual void fun1();
virtual void fun2();

};

void Base::fun1() { std::cout << "Base fun1\n"; }
void Base::fun2() { std::cout << "Base fun2\n"; }

class Derived : public Base {
public:
void fun2() override;

};

void Derived::fun2() { std::cout << "Derived fun2\n"; }

void call(Base& b) {
b.fun1();
b.fun2();

}

int main() {
//
Derived d;
call(d);

}

vtbl of Base
Name Address
fun1 Base::fun1
fun2 Base::fun2

vtbl of Derived
Name Address
fun1 Base::fun1
fun2 Derived::fun2



Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup

final
class Derived : public Base {
public:
void fun2() override final;

};

void Derived::fun2() { std::cout << "Derived fun2\n"; }

class AnotherDerived : public Derived {
public:
void fun2() override;

};

class Derived final : public Base {
public:
void fun2() override;

};

void Derived::fun2() { std::cout << "Derived fun2\n"; }

class AnotherDerived : public Derived {
public:
void fun2() override;

};



Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup

Inheriting Constructors
class Employee {
public:
Employee(std::string name, std::string title) : _name{name}, _title{title} {}
std::string name() const { return _name; }
std::string title() const { return _title; }

private:
std::string _name;
std::string _title;

};

class EmployeeUpdated : public Employee {
public:
using Employee::Employee; // inherit constructors
void print() const {
std::cout << "Name: " << name() << ", Title: " << title() << '\n';

}
int x; // we forgot to provide initialization of x

};

int main() {
//
EmployeeUpdated ramy{"Ramy", "SW Engineer"};
ramy.print();

}

Constructors are not inherited, if a class 
adds data members to a base or requires a 
stricter class invariant, it would be a 
disaster to inherit constructors.



Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup

Abstract Classes
Some classes, such as a class Shape, represent 
abstract concepts for which objects cannot 
exist. A Shape makes sense only as the base of 
some class derived from it. A class with one or 
more pure virtual functions is an abstract 
class, and no objects of that abstract
class can be created.

It is usually important for an abstract class 
to have a virtual destructor. Because the 
interface provided by an abstract class cannot 
be used to create objects using a constructor, 
abstract classes don’t usually have 
constructors.

A pure virtual function that is not defined in 
a derived class remains a pure virtual 
function, so the derived class is also an 
abstract class. This allows us to build 
implementations in stages

class Shape { // abstract class
public:
virtual void rotate(int) = 0; // pure virtual function
virtual void draw() const = 0; // pure virtual function
// ...
virtual ~Shape(); // virtual

};

class Circle : public Shape {
public:
Circle(Point p, int r) : _center{p}, _radius(r) {}
void rotate(int) override {}
void draw() const override;

private:
Point _center;
int _radius;

};



Thank you


