
ةثيدحلا++Cةغلبةجمربلاملعتةلسلس
Learn Modern C++ Programming Course

بيدلادمحأسدنهملادادعإ



#36: Derived Classes P1



Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup

Derived Classes
• A concept (idea, notion, etc.) does not exist in isolation. It coexists with 

related concepts and derives much of its power from relationships with 
other concepts.

• Implementation inheritance: to save implementation effort by sharing 
facilities provided by a base class. (run-time polymorphism or dynamic 
polymorphism)

• Interface inheritance: to allow different derived classes to be used 
interchangeably through the interface provided by a common base class. 
(compile-time polymorphism or static polymorphism)



Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup

Derived Classes
struct Employee {
std::string name;
std::string title;
// ...

};

struct Manager {
Employee employee;
std::vector<Employee*> list; // people managed
int level;
// ...

};

Nothing that tells the compiler 
and other tools that Manager is 
also an Employee.

We could either use explicit type 
conversion on a Manager* or put 
the address of the employee member 
onto a list of employees. However, 
both solutions are inelegant and 
can be quite obscure.



Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup

Derived Classes

Now, Manager is a subtype of 
Employee, so that a Manager can 
be used wherever an Employee is 
acceptable.

struct Employee {
std::string name;
std::string title;
// ...

};

struct Manager : public Employee {
std::vector<Employee*> list; // people managed
int level;
// ...

};

int main() {
//
Employee ramy{"Ramy", "SW Engineer"};
Employee hady{"Hady", "SW Engineer"};
Manager fady{"Fady", "SW Manager"};

fady.list.push_back(&ramy);
fady.list.push_back(&hady);

std::vector<Employee*> all{&ramy, &hady, &fady}; // ok
}



Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup

Derived Classes
void fun(Manager man, Employee emp) {

Employee* pemp{&man}; // ok
Manager* pman{&emp}; // error
Manager* pman{static_cast<Manager*>(pemp)}; // ok

}

In general, if a class Derived has a public base 
class Base, then a Derived* can be assigned to a 
variable of type Base* without the use of explicit 
type conversion. The opposite conversion, from Base* 
to Derived*, must be explicit.



Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup

Member Functions
A member of a derived class can use the 
public – and protected – members of a 
base class as if they were declared in 
the derived class itself. 

The concept of a private member would be 
rendered meaningless by allowing a 
programmer to gain access to the private 
part of a class simply by deriving a new 
class from it.

class Employee {
public:
Employee(std::string name, std::string title) : _name{name}, 

_title{title} {}
void print() const;

private:
std::string _name;
std::string _title;

};

class Manager : public Employee {
public:
Manager(std::string name, std::string title, int level)

: Employee(name, title), _level{level} {}
void add_managed(Employee* managed) { list.push_back(managed); }
void print() const;

private:
std::vector<Employee*> list; // people managed
int _level;

};

void Manager::print() const {
std::cout << "Manager: " << '\n';
Employee::print();
std::cout << "Managing: " << '\n';
for (auto&& emp : list) {

emp->print();
}

}



Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup

Type Fields
Given a pointer of type Base*, to which derived type 
does the object pointed to really belong? There are 
four fundamental solutions:

1. Ensure that only objects of a single type are 
pointed to.

2. Place a type field in the base class for the 
functions to inspect.

3. Use dynamic_cast.

4. Use virtual functions.

void print(Employee* emp) { emp->print(); }

int main() {
//
Employee ramy{"Ramy", "SW Engineer"};
Employee hady{"Hady", "SW Engineer"};
Manager fady{"Fady", "SW Manager", 2};

fady.add_managed(&ramy);
fady.add_managed(&hady);

print(&ramy);
print(&fady);

}



Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup

Type Fields
class Employee {
public:
enum EmployeeType { manager, employee };
EmployeeType type;
Employee(std::string name, std::string title)

: type{employee}, _name{name}, _title{title} {}
void print() const;

private:
std::string _name;
std::string _title;

};

class Manager : public Employee {
public:
Manager(std::string name, std::string title, int level)

: Employee(name, title), _level{level} {
type = manager;

}
void add_managed(Employee* managed) { list.push_back(managed); }
void print() const;

private:
std::vector<Employee*> list; // people managed
int _level;

};

void print(Employee* emp) {
switch (emp->type) {
case Employee::employee:
emp->print();
break;

case Employee::manager: {
const Manager* man = static_cast<const Manager*>(emp);
man->print();
break;

}
default:
break;

}
}

This works fine, especially in a small program 
maintained by a single person. However, it has a 
fundamental weakness in that it depends on the 
programmer manipulating types in a way that cannot 
be checked by the compiler.

Furthermore, any addition of a new kind of Employee 
involves a change to all the key functions in a
system – the ones containing the tests on the type field. 
In other words, use of a type field is an error-prone 
technique that leads to maintenance problems.



Thank you


