
ةثيدحلا++Cةغلبةجمربلاملعتةلسلس
Learn Modern C++ Programming Course

بيدلادمحأسدنهملادادعإ

#33: Class Basics 3

Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup

Class Object Initialization
we can initialize objects of a class for which
we have not defined a constructor using
- memberwise initialization,
- copy initialization, or
- default initialization.

class Person {
public:
std::string name;
int age;
std::string city;

};

int main() {
Person s1{"Tamer", 25, "Zagazig"}; // memberwise initialization
Person s2{s1}; // copy initialization
Person none{}; // default initialization
Person no_init;

}

For statically allocated objects, the rules are exactly as if you had
used {}. However, for local variables and free-store objects, the default
initialization is done only for members of class type, and members of
built-in type are left uninitialized.

Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup

Initialization by Constructors
class Person {
public:
Person(std::string name, int age, std::string city)

: name(name), age(age), city(city) {
std::cout << "Constructor called" << std::endl;

}
std::string name;
int age;
std::string city;

};

int main() {
Person s1{"Tamer", 25, "Zagazig"}; // Constructor initialization
Person s2{s1}; // copy initialization
Person none{}; // ERROR: default initialization
Person no_init; // ERROR

}

Using the () notation, you can
request to use a constructor in an
initialization.

Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup

Default Constructors
class Person {
public:
Person(){}; // default constructor
Person(std::string name, int age, std::string city)

: name(name), age(age), city(city) {
std::cout << "Constructor called" << std::endl;

}
std::string name;
int age;
std::string city;

};

int main() {
Person s1{"Tamer", 25, "Zagazig"}; // Constructor initialization
Person s2{s1}; // copy initialization
Person none{}; // OK: default initialization
Person no_init; // OK

}

A constructor that can be invoked
without an argument is called a default
constructor. A default argument can
make a constructor that takes arguments
into a default constructor.

Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup

Initializer-List Constructors
template <typename T>
class Array {
public:
Array(std::initializer_list<T> list) : _size(list.size()) {

for (auto i = 0; i < list.size(); ++i) {
_elem[i] = list.begin()[i];

}
}

private:
T* _elem;
std::size_t _size;

};

int main() {
Array arr1{1, 2, 3, 4, 5};
Array arr2{10, 20, 30};

}

A constructor that takes a single argument of type
std::initializer_list is called an initializer-list
constructor.

The initializer list can be of arbitrary length but
must be homogeneous. That is, all elements must
be of the template argument type, T, or implicitly
convertible to T.

Unfortunately, initializer_list doesn’t provide
subscripting.

Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup

Delegating Constructors
class Date {
public:
Date(int d, int m, int y) { validate(d, m, y); }
Date(int d, int m) { validate(d, m, 2023); }
void print();

private:
int _day, _month, _year;
void validate(int d, int m, int y) {
if ((d > 31) || (d < 1) || (m > 12) || (m < 1) || (y > 2023) || (y < 1900))
throw std::invalid_argument{"Date not valid"};

_day = d;
_month = m;
_year = y;

}
};

If you want two constructors to do the same action,
you can repeat yourself or define a function to
perform the common action. Both solutions are common
(because older versions of C++ didn’t offer anything
better).

Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup

Delegating Constructors
class Date {
public:
Date(int d, int m, int y) {
if ((d > 31) || (d < 1) || (m > 12) || (d < 1) || (y > 2023) || (y < 1900))
throw std::invalid_argument{"Date not valid"};

_day = d;
_month = m;
_year = y;

}
Date(int d, int m) : Date{d, m, 2023} {}
void print();

private:
int _day, _month, _year;

};

That is, a member-style initializer using
the class’s own name (its constructor
name) calls another constructor as part
of the construction.

You cannot both delegate and explicitly
initialize a member.

Delegating by calling another constructor
in a constructor’s member and base
initializer list is very different from
explicitly calling a constructor in the
body of a constructor.
Date(int d, int m) : {Date{d, m, 2023}}

Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup

Slicing
struct Base {
int b;
Base() {}
Base(const Base&) {
std::cout << "Call base class copy constructor" << std::endl;

}
// ...

};

struct Derived : Base {
int d;
Derived() {}
Derived(const Derived&) {
std::cout << "Call member derived copy destructor" << std::endl;

}
// ...

};

void naive(Base* p) {
Base b2 = *p; // slice
// ...

}

int main() {
Derived d;
naive(&d);
Base bb = d; // slice
// ...

}

A pointer to a derived class implicitly
converts to a pointer to its public base class.
When applied to a copy operation, this simple
and necessary rule leads to a trap for the
unwary.

- Prohibit copying of the base class: delete
the copy operations.
- Prevent conversion of a pointer to a derived
to a pointer to a base: make the base class a
private or protected base.

The former would make the initializations of b2
and bb errors; the latter would make the call
of naive() and the initialization of bb errors.

Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup

Explicit Defaults
class Person {
public:
Person(std::string name, std::string city, std::string company,

std::string position)
: _name(name), _city(city), _company(company), _position(position) {}

Person() = default;
~Person() = default;
Person(const Person&) = default;
Person(Person&&) = default;
Person& operator=(const Person&) = default;
Person& operator=(Person&&) = default;

private:
std::string _name, _city, _company, _position;

};

Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup

deleted Functions
struct Base {
int b;
Base() {}
Base& operator=(const Base&) = delete; // disallow copying
Base(const Base&) = delete;
Base& operator=(Base&&) = delete; // disallow moving
Base(Base&&) = delete;
// ...

};

template <class T>
T* clone(T* p) // return copy of *p
{
return new T{*p};

};

// don’t try to clone a Foo
Foo* clone(Foo*) = delete;

we can delete any function that we
can declare. For example, we can
eliminate a specialization from the
set of possible specializations of
a function template. Another
application is to eliminate an
undesired conversion.

struct Z {
// ...
Z(double); // can initialize with a double
Z(int) = delete; // but not with an integer

};

Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup

deleted Functions
A further use is to control where a
class can be allocated.

class Not_on_stack {
// ...
~Not_on_stack() = delete;

};

class Not_on_free_store {
// ...
void* operator new(size_t) = delete;

};

Thank you

