
ةثيدحلا++Cةغلبةجمربلاملعتةلسلس
Learn Modern C++ Programming Course

بيدلادمحأسدنهملادادعإ



#32: Class Basics 2



Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup

[static] Members
class Date {
public:
Date(int dd = 0, int mm = 0, int yy = 0);
static void set_default(int dd, int mm, int yy);
void print() const;

private:
int d, m, y;
static Date default_date;

};

Date Date::default_date{1, 1, 1970};

int main() {
//
Date d1;
d1.print(); // Date: 1.1.1970
d1.set_default(2, 2, 1980); // or Date::set_default
Date d2;
d2.print(); // Date: 2.2.1980

}

There is exactly one copy of a static 
member instead of one copy per object



Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup

Self-Reference
In a non-static member function, the 
keyword this is a pointer to the object 
for which the function was invoked.

class Person {
public:
Person() {}
Person& name(std::string name) {

_name = name;
return *this;

}
// . . .

private:
std::string _name, _city, _company, _position;

};

int main() {
//
Person p1;
p1.name("Rady").lives_in("Cairo").works_at("SoftTec").as("SW Dev.").print();

}

In a non-const member function of class 
X, the type of this is X*. However, this
is considered an rvalue, so it is not 
possible to take the address of this or 
to assign to this. 



Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup

Member Types
Nested class can refer to types and static 
members of its enclosing class. It can also 
refer to non-static members (even private) 
when it is given an object of the enclosing 
class to refer to.

template <typename T>
void Tree<T>::Node::f(Tree* p) {

top = right; // Error
p->top = right; // OK
value_type v = left->value; // OK

}

A class does not have any special access 
rights to the members of its nested class.

template <typename T>
class Tree {
private:
using value_type = T; // member alias
enum Policy { rb, splay, treeps }; // member enum
class Node { // member class
public:
void f(Tree*);

private:
Node* right;
Node* left;
value_type value;

};
Node* top;

public:
void g(Node*);

};

template <typename T>
void Tree<T>::g(Tree::Node* p) {

value_type val = right->value; // Error
value_type v = p->right->value; // Error
p->f(this); // OK

}



Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup

Class Types
• Concrete classes

• Representation is part of its definition, preferred for small, frequently used, 
and performance-critical types, such as complex numbers and containers.

• We can not modify the behavior, make you own class instead.

• Abstract classes
• Provides interface to insulates a user from implementation details.

• Behavior can be modified for improvements. 

• Classes in class hierarchies



Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup

Constructors and Destructors
class X {
X(Sometype); // constructor: create an object
X(); // default constructor
X(const X&); // copy constructor
X(X&&); // move constructor
X& operator=(const X&); // copy assignment: clean up target and copy
X& operator=(X&&); // move assignment: clean up target and move
~X(); // destructor: clean up
// ...

};

A destructor does not take an argument, 
and a class can have only one destructor.



Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup

Constructors and Destructors
class Member {
public:
Member() { std::cout << "Call member class constructor" << std::endl; }
~Member() { std::cout << "Call member class destructor" << std::endl; }

};

class Base {
public:
Base() { std::cout << "Call base class constructor" << std::endl; }
~Base() { std::cout << "Call base class destructor" << std::endl; }

};

class Derived : Base {
public:
Derived() { std::cout << "Call derived class constructor" << std::endl; }
~Derived() { std::cout << "Call derived class destructor" << std::endl; }
Member member;

};

int main() {
{ Derived x; }

}

Call base class constructor
Call member class constructor
Call derived class constructor
Call derived class destructor
Call member class destructor
Call base class destructor



Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup

Constructors and Destructors
A constructor builds a class object "from the bottom up":

• first, the constructor invokes its base class constructors,

• then, it invokes the member constructors, and

• finally, it executes its own body.

A destructor "tears down" an object in the reverse order:

• first, the destructor executes its own body,

• then, it invokes its member destructors, and

• finally, it invokes its base class destructors.



Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup

Calling Destructors

If declared for a class X, a destructor will 
be implicitly invoked whenever an X goes out 
of scope or is deleted. This implies that we 
can prevent destruction of an X by declaring 
its destructor =delete or private.

class Nonlocal {
public:
// ...
void destroy() { this->~Nonlocal(); } // explicit destruction
private:
// ...
~Nonlocal() {} // don’t destroy implicitly

};

void user() {
Nonlocal x; // Error
Nonlocal* p = new Nonlocal; // OK
// ...
delete p; // Error
p->destroy(); // OK

}



Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup

Virtual Destructors
class Shape {
public:
// ...
virtual void draw() = 0;
virtual ~Shape(){};

};

class Circle : public Shape {
public:
// ...
void draw() override { std::cout << "Draw circle" << std::endl; }
~Circle() override { std::cout << "Remove circle" << std::endl; }
// ...

};

void test(Shape* p) {
p->draw(); // invoke the appropriate draw()
// ...
delete p; // invoke the appropriate destructor

};

A destructor can be declared to be 
virtual, and usually should be for a 
class with a virtual function.

The reason we need a virtual 
destructor is that an object usually 
manipulated through the interface
provided by a base class is often 
also deleted through that interface



Thank you


