
ةثيدحلا++Cةغلبةجمربلاملعتةلسلس
Learn Modern C++ Programming Course

بيدلادمحأسدنهملادادعإ



#5: Automatic Type 
Deduction



Type Aliases
typedef unsigned int* Pint32_t; // old

using Pint32_t = unsigned int*;

Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup



Lifetimes of Objects
• Automatic: Unless the programmer specifies otherwise, an object declared in a 

function is created when its definition is encountered and destroyed when its 
name goes out of scope. (allocated on the stack)

• Static: Objects declared in global or namespace scope and statics declared in 
functions or classes are created and initialized once (only) and ‘‘live’’ until the 
program terminates. (require locking to avoid data races)

• Free store: Using the new and delete operators, we can create objects whose 
lifetimes are controlled directly.

• Temporary objects: e.g. copy initialization as in case of pass by value.

• Thread-local objects
Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup



auto
• auto for deducing a type of an object from its initializer.

Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup

int a1{123};
char a2 = 123;

auto a3 = 123; // the type of a3 is int
auto a4; // error: declaration of 'auto a4' has no initializer
auto a5{123};

auto x1 = {1, 2}; // x1 type is std::initializer_list<int>
auto x2 = {3}; // x2 type is is std::initializer_list<int>

auto x3 = {1, 2.0}; // error: cannot deduce element type
auto x4{1, 2}; // error: not a single element



auto Example

Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup

template <class T>
void f1(std::vector<T>& arg) {
for (typename std::vector<T>::iterator p = arg.begin(); p != arg.end(); ++p)
*p = 7;

}

template <class T>
void f2(std::vector<T>& arg) {
for (auto p = arg.begin(); p != arg.end(); ++p) *p = 7;

}

• There is not much advantage in using auto instead of int for an expression 
as simple as 123.The harder the type is to write and the harder the type is 
to know, the more useful auto becomes.



decltype()
• decltype(expr) for deducing the type of something that is not a simple 

initializer, such as the return type for a function or the type of a class 
member.

Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup
https://en.cppreference.com/w/cpp/language/decltype

struct A {
double x;

};
const A a{0};

decltype(a.x) y;
std::cout << "y type is " << typeid(y).name() << std::endl;



decltype() Example

Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup

// Generic Programming
template <typename T, typename U>
auto add(T t, U u) -> decltype(t + u) // suffix return type syntax
{
return t + u;

}

int main() {
auto result1{add(5, 4.5)};
std::cout << "result1 type is " << typeid(result1).name() << std::endl;

auto result2{add(5, 5)};
std::cout << "result2 type is " << typeid(result2).name() << std::endl;

}

result1 type is d
result2 type is i



Thank you


