
ةثيدحلا++Cةغلبةجمربلاملعتةلسلس
Learn Modern C++ Programming Course

بيدلادمحأسدنهملادادعإ



#6: Value Categories
lvalue & rvalue



lvalue & rvalue
• an lvalue is an expression that refers to an object (contiguous region of 

storage).

• rvalue means a value that is not an lvalue. 

• lvalue originally meant “something that can be on the left-hand side of an 
assignment.” Not every lvalue may be used on the left-hand side of an 
assignment; an lvalue can refer to a constant

• An lvalue that has not been declared const is often called a modifiable 
lvalue.

• Address of an lvalue may be taken by built-in address-of operator &.
Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup
https://en.cppreference.com/w/cpp/language/value_category



Example 1

Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup

int var1 = 4;
int *pvar = &var1;
int var2 = var1 + 4;

&var1 = 10; // error: lvalue required as left operand of assignment

(var1 = 4) = 10;
(var1 + 4) = 10; // error: lvalue required as left operand of assignment



Example 2

Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup

int var = 20;

int& fun1() { return var; }
int fun2() { return var; }

int main() {
int x1 = fun1(); // fun1() is lvalue
fun1() = 10;

int x2 = fun2(); // fun2() is rvalue
fun2() = 10; // error: lvalue required as left operand of assignment

return 0;
}



C++11 General rule
• Two properties that matter for an object when it comes to addressing, 

copying, and moving.

• Has identity: The program has the name of, pointer to, or reference to the 
object.

• Movable: The object may be moved from; move semantics e.g. pointer to 
dynamically allocated memory.

Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup



More categories

Source: The C++ Programming Language (4th Edition), Bjarne Stroustrup

Has identity Movable category category
Y N lvalue

generalized lvalue
Y Y xvalue

rvalueN Y prvalue

42 // movable (x = 42) and not identifiable -> rvalue, prvalue
a + b // movable (x = a + b) and not identifiable -> rvalue, prvalue
++a // ++a = 20 is OK -> identifiable and not movable -> glvalue, lvalue
a++ // a++ = 20 is ERROR -> movable and not identifiable -> rvalue, prvalue

Pre-increment and pre-decrement operators increments or decrements the value of the object and returns a reference to 
the result.
Post-increment and post-decrement creates a copy of the object, increments or decrements the value of the object and 
returns the copy from before the increment or decrement.



Thank you


