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Abstract 

The method of dynamic relaxation in its early stages of development was perceived as a numerical 

finite difference technique. It was first used to analyze structures, then skeletal and cable structures, 

and plates. The method relies on a discretized continuum in which the mass of the structure is 

assumed to be concentrated at given points (i.e. nodes) on the surface. The system of concentrated 

masses oscillates about the equilibrium position under the influence of out of balance forces. With 

time, it comes to rest under the influence of damping. The iterative scheme reflects a process, in 

which static equilibrium of the system is achieved by simulating a pseudo dynamic process in time. 

In its original form, the method makes use of inertia term, damping term and time increment. The 

basics of this research paper stand on the ordinary and partial differential equations, which value the 

price of an option by using dynamic relaxation (DR) techniques. The study of partial differential 

equations in complete generality is a vast undertaking. As almost all of them are not possible to 

solve analytically we must rely on numerical methods, and the most popular ones are the finite 

differences methods coupled with dynamic relaxation techniques. With this research paper  i do not 

intend to become an expert in few hours in order to solve differential equations numerically, but 

develop both intuition and technical strength required to survive when such a problem needs to be 

solved. 

Keywords: Finite differences, dynamic relaxation, mathematical modeling, rectangular structures, 

ordinary and partial differential equation 

Symbols and Abbreviations: 

  = K
*
 

    = maximum number of iterations 

  = equal to 

  = discretization of solution in the x – direction  

  = greater than 

  = less than 
  

  
= velocity 

   

   
= acceleration 

  = time increment 

 = inertia effect 

 = damping effect 

   Introduction 

Differential equations can describe nearly all systems undergoing change. They are ubiquitous in 

science and engineering as well as economics, social science, biology, business, health care, etc. 

Many mathematicians have studied the nature of these equations for hundreds of years and there are 

many well developed solution techniques. Often, systems described by differential equations are so 

complex, or the systems that they describe are so large, that a purely analytical solution to the 

equations is not tractable. It is in these complex systems where computer simulations and numerical 

methods are useful.  

The techniques for solving differential equations based on numerical approximations were 

developed before programmable computers existed. During world war two, it was common to find 

rooms of people (usually women) working on mechanical calculators to numerically solve systems 

of differential equations for military calculations. Before programmable computers, it was also 
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common to exploit analogies to electrical systems to design analogue computers to study 

mechanical, thermal, or chemical systems. As programmable computers have increased in speed 

and decreased in cost, increasingly complex systems of differential equations can be solved with 

simple programs written to run on a common PC. Currently, the computer on your desk and laptop 

computers can tackle problems that were inaccessible to the fastest supercomputers just 45 or 50 

years ago. Therefore, the history of numerical solution of ordinary and partial differential equations 

is much younger than that of analytical solution methods, but the development of high speed 

computers nowadays makes the advent of numerical methods very fast and productive. On the other 

hand, the numerical approximation of ordinary and partial differential equations often demands a 

knowledge of several aspects of the problem, such as the physical background of the problem in 

order to understand and interpret the behavior of expected solutions, or the algorithmic aspects 

concerned with the choice of the numerical method and the accuracy that can be achieved. 

The aim of this research paper is to discuss some modeling problems and provide the students with 

the knowledge of Dynamic Relaxation (DR) techniques for the numerical approximation of the 

model equations. The theory and application of dynamic relaxation method is a very nice 

combination of mathematical theory with aspect of implementation, modeling, and applications. So 

– called adaptive methods enable on one hand the prescription of a tolerance for the approximation, 

while on the other hand they make computations possible in cases where, for example, a uniformly 

refined mesh would be prohibitively costly even on nowadays' computers, especially in three space 

dimensions or for problems that need the resolution of different scales. 

In order to analyze various engineering problems with linear or nonlinear geometries, a stable and 

efficient numerical method is of great importance. Also, it is essential to develop a powerful 

algorithm appropriate for a wide range of problems. Dynamic relaxation (DR) method has been 

proved to have a promising potential with a number of distinguished features. For instance, it has a 

clear and simple algorithm so that the required computer programming is straightforward. 

Moreover, it needs to solve large scale equations directly, because of its explicit formulation. Also, 

it is very reliable and stable to solve and analyze nonlinear problem. 

The DR technique is based on the fact that a system undergoing damped vibration ultimately comes 

to rest in the displaced position of the static equilibrium. The damped vibration starts when exciting 

the system by a constant force. The method can be interpreted both by physics and mathematics. 

Physically, the procedure is similar to obtaining the steady state solution of a dynamic system. 

Accordingly, in order to achieve the solution of a static problem, it could be transferred to a 

fictitious dynamic space. Due to this transference, it is necessary to specify some extra factors for 

the problem. These factors are mass, damping coefficient and time step. Mathematically, the DR 

method can also be generated from the second order Richardson rule. The convergence acceleration 

could be investigated in a pure mathematical method. 

The dynamic relaxation (DR) is a numerical method usually used in the form finding of all kind of 

structures (tensegrity structures, membrane structures, shell structures …etc.) that consists in 

considering that the mass of the system is discretized and lumped in the nodes; these nodes oscillate 

about the equilibrium position, and by introducing artificial inertia and damping elements, the nodes 

come to rest in the static equilibrium position. The fact of using artificial inertia and damping makes 

the use of DR methods be restrained to the cases where the only objective of the calculation is to 

obtain the final equilibrium position of the structure, because the transient part will not be physical. 

However, the displacement path is close to a physical one, as it will be shown in this work. In the 

literature, we can find DR methods using kinetic damping and DR methods using viscous damping. 

The methodology of these two methods is different. In the case of DR with kinetic damping, the 

kinetic energy of the structure is traced, and the velocities are reset to zero at each of the kinetic 

energy peaks (i.e. that are gradually smaller) until the balance of internal and external forces is 

reached and the structure comes to rest; therefore, the principle in this case is to try to optimize the 

mass matrix in order to reach as fast as possible the kinetic energy peaks. On the other hand, when 

using DR with viscous damping, the velocities are not so important; the main idea is to try to damp 

as effectively as possible the oscillations, by searching an optimum viscous damping coefficient. 
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The most commonly used damping method is the viscous damping. This method is closer to the real 

behavior of the structures, since they behave as if they were somehow viscous. The kinetic damping 

makes the structure evolve in a very different way. 

   Formulation of Dynamic Relaxation Equations: 

Dynamic Relaxation method (DR) Coupled with Finite Differences method (FD) is used for solving 

ordinary and partial differential equations as a single equation or as a group of differential 

equations. To apply dynamic relaxation software technique, the differential equations are 

transformed into dynamic equations by adding damping and inertia elements. These in turn are 

expressed in finite differences form, and the solution is obtained by an iterative procedure as is 

explained in the following paragraphs: 

The differential equation is referred to in the following as: 

                                                   

Where, f = 0, may be an ordinary differential equation as follows: 

    
   

   
     

  

  
         

Or a partial differential equation as stated below: 

    
   

   
     

   

   
           

The dynamic relaxation method (DR) formula begins with the dynamic equation which may be 

written as: 

   
   

   
  

  

  
                             

In this procedure the statically differential system i.e. equation (1) is transferred to an artificial 

dynamic space by adding fictitious inertia and damping forces as in equation (2). 

The DR method was first proposed in 1960s; refer to Rushton [1], Cassel and Hobbs [2], and Day 

[3]. In this method, the equations of equilibrium are converted to dynamic equations by adding 

damping and inertia terms, these are then expressed in finite difference form and solution is 

obtained through iterations. The optimum damping coefficient and time increment used to stabilize 

the solution depend on a number of factors including the stiffness matrix of the structure, the 

applied load, the boundary conditions and the size of the mesh used, etc. 

In order to analyze various complicated problems in engineering, many kinds of efficient numerical 

methods such as finite difference method, finite element method and the weighted residual method 

have been developed. However, the accompanying problem is that large computers are needed to 

solve the related large scale equations. Sometimes, the equations are so large that one can only 

obtain rough results. This is especially conspicuous in solving non – linear problems. In addition, 

numerical instability during iteration is often involved. 

In the traditional methods of solving equations from static equilibrium problems, it is considered 

that internal forces exist initially in the structures. In so doing, one assumes that the external forces 

were exerted very slowly so that the dynamic process of the structures could be neglected. In fact, 

as has been pointed out by Rayleigh [4], static solution of a mechanics system can be referred to as 

the steady state part of the transient response of the system to step loading. This approach was 

successfully applied to solving linear problems by Otter [5] and Day [3] in dependently in 1965, 

and was named the dynamic relaxation (DR) method. 
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Nowadays, researchers are attracted by the efficiency of solving non – linear problems with DR. 

The applications of DR to various problems indicate that the method has the following distinctive 

features  see, for example, [6] –     . 

Numerical techniques other than the dynamic relaxation (DR) method include finite element 

method (FEM), which is widely used in most of the theoretical analyses of today's research. In a 

comparison between the dynamic relaxation method and the finite element method, Aalami [10] 

found that the computer time required for finite element method is eight times greater than that for 

the dynamic relaxation analysis, whereas storage capacity for finite element analysis is ten times or 

more than that for DR analysis. This fact is supported by Putcha and Reddy [11], and Turvey and 

Osman [12] –     , who they noted that some of the finite element formulations require large 

storage capacity and computer time. However, if the analysis requires less computations and 

computer time, then, the dynamic relaxation is considered more efficient than the finite element 

method. In another comparison Aalami [10] found that the difference in accuracy between one 

version of finite element and another may reach a value of 10% or more, whereas a comparison 

between one version of finite element method and DR showed a difference of more than 15%. 

Therefore, the dynamic relaxation method (DR) can be considered of acceptable accuracy. 

The only apparent limitation of dynamic relaxation (DR) method is that it can only be applied to 

limited geometries. However, this limitation is irrelevant to square and rectangular plates and beams 

which are widely used in engineering applications. 

The errors inherent in the dynamic relaxation (DR) technique [15] –      include discretization 

error which is due to the replacement of a continuous function with a discrete function. Also, there 

is an additional error resulting from the non–exact solution of the discrete equations due to the 

variations of the velocities from the edges of the plate to the center. The usage of finer meshes 

reduces the discretization error, but increases the round – off error due to the large amount of 

computations involved. 

For the sake of simplifying and explanation of the DR method,   in equation (2) is referred to as 

displacement, and hence the terms    /    and     /     are the velocity and acceleration 

respectively. Accordingly the first and second terms on the right – hand side are the inertia and 

damping terms respectively.   And   are the inertia and damping coefficients respectively, and   is 

time. 

If the velocities before and after the period    at an arbitrary node in the finite difference mesh are 

denoted by {     }    and {     }  respectively, then using finite differences in time, and 

specifying the value of the function at    
 

 
 , it is possible to write equation (2) in the following 

form: 
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, which is the velocity at the middle of the time increment, can be approximated by 

the mean velocities before and after the time increment,  , which is expressed as follows: 
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Hence, equation (3) can be expressed in the following form as: 
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Equation (4) can then be arranged to give the velocity after the time interval,   : 
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Where: 
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The displacements at the middle of the next time increment can be determined by integrating the 

velocity, so that: 

 
  

 
 
  

  
 
 
 {

  

  
}
 
                                                              

The iterative procedure begins at time     with all initial values of the velocitiesand 

displacements equal to zero or any other suitable values. In the first iteration, the velocities are 

obtained from equation (5) and the displacements from equation (6). The boundary conditions are 

then applied. Subsequent iterations follow the same steps until the desired accuracy is achieved. 

   Finite Difference Approximation: 

A.  Ordinary Differential Equations: 

The values of the interpolating function      in the vicinity of the node   in a non – uniform or 

graded mesh shown in Fig. 1 below can be expressed as follows using Taylor's series: 

                    
     

    
    

  
       

 
    

     

  
        

    
     

  
                                        

                  
     

  
    

  
       

 
  

     

  
        

  
     

  
                                                 

 

 
Fig.   Non – uniform or graded mesh 

Where     ,      ,       , and          are the first, second, third, and fourth derivatives of the 

function      at node  . 
When multiplying equation (7) by   

 and equation (8) by    
 , then subtract the latter from the 

former and rearrange the resulting expression to obtain the function at node   as follows: 
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Multiply equation (7) by    and equation (8) by      and add them together to obtain the second 

derivative of the function      at node   as follows: 
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Where: 

  
   

 
 

             
 

  
   

  
 

      
 

  
   

 
 

           
 

   
       

 
        

  
              

  
                   

If the derivatives of      which are greater than the third are assumed negligible i.e. the actual 

function approximates a quadratic function then    and    represent the error in the approximation 

resulting from replacing the actual function by a quadratic function. The error in the first derivative 

of the function of equation (10) depends on the graded mesh and it is proportional to   . The error 

in the second derivative of the function, equation (12), is proportional to     for a uniform mesh 

(i.e.       ), and proportional to    for a graded mesh (i.e.         ). That is to say the error 

associated with a graded mesh is greater than that of a uniform mesh with the same number of 

elements. However, a graded mesh is more flexible than a uniform mesh and it allows closer nodes 

to be employed in those regions where a higher degree of accuracy is required. 

When the mesh is uniform       , and hence: 

  
   

   
   

 
 

 
 

  
   

   

  
   

   
   

  
 

 
 

  
   

    

And therefore, the first and second derivatives, with the error neglected, are as follows: 
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The first derivative of the function with respect to   can be written also for a uniform mesh as 

follows with: 
  

  
    

 

  
[           ] 

Or 
  

  
    

 

  
[           ]                                                             

B.  Partial Differential Equations: 

The first and second derivatives of a function        at an arbitrary node (   ) shown in 

Table 1 below can be written as follows: 
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Where    and      are the ratios of the dimensions of the elements on both sides of the node (   ) to 

the average element length all measured in the x – direction.      And      are the ratios of the 

dimensions of the elements on both sides of node (   ) to the average element length all measured in 

the y – direction.  

Table 1 the first and second derivatives of a two dimensional function        

 
When the mesh is uniform i.e.          And          , we have: 
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The first and second derivatives of          for a uniform mesh are:  
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   Procedural Steps in Solving Differential Equations Using DR Method 

The DR program performs the following operations: 

 . Reads data file. 

 . Computes fictitious densities. 

 . Computes velocities and displacements. 

 . Checks stability of numerical computations. 

 . Checks convergence of solution. 

 . Checks wrong convergence.  

Refer to references [24] –      for more information about analysis of rectangular laminated 

plates in bending. 

A.  Numerical Instability 

In every iteration, the value of the function at the center of the solution domain or other suitable 

point is compared with two estimated reference values representing lower and upper bounds of the 

function at that point. If solution was failed such that the computed value of the function at the 

specified point did not fall within the prescribed range, the solution is deemed unstable, and 

therefore iterations are terminated. The damping coefficients are then reduced and the process of 

iteration is restarted once again. The iterations are repeated several times until stability is reached. 

B.  Convergence of DR Solution: 

Convergence of the dynamic relaxation solution is checked at the end of each iteration by 

comparing the velocities over the domain with a prescribed value. The procedure is repeated until 

the solution is deemed converged and consequently the iterative process is terminated. 

C.  Convergence to an Invalid Solution: 

Sometimes DR solution converges to incorrect answer. Check for invalid solution is carried out 

after the solution has satisfied the convergence criterion explained earlier. In the check procedure 

the profile of variable is compared with the anticipated profile over the domain. For instance, if the 

value of the function on the boundaries is zero, and it is known that the function increases from 

edge to center, and then the solution should follows a similar profile. If the computed profile is 

different from that, the solution is deemed to be incorrect. When this happens, the solution can 

hardly be made to converge to the correct answer by altering the damping coefficients and time 

increment. One should take another look to the boundary conditions and correct them if they are 

wrong. 

D.  Time Increment: 

Proper time increment is a very important factor for speeding convergence and controlling 

numerical computations. When time increment is too small, convergence becomes tediously slow; 

and if it is too large, the solution becomes unstable. Time increment must be less than 1, say, 0.8. 

E.  Damping Coefficient: 
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The optimum damping coefficient is that which produces critical motion. When the damping 

coefficient or coefficients are large, the motion is over – damped and convergence becomes very 

slow. When the coefficients are small, the motion is under – damped and can cause numerical 

instability. 

F.  Solved Examples: 

In the following examples, the dynamic relaxation (DR) numerical method combined with the finite 

differences discretization technique is used to solve nonlinear ordinary and partial differential 

equations. Subsequently a FORTRAN program is developed to generate the numerical results as 

analytical and/ or exact solutions. 

Solution of an Example for Ordinary Differential Equation: 

Example    :  

Solve the following ordinary differential equation using the dynamic relaxation (DR) method. 

   

   
                                             

Where             , and the end conditions are:               

Note that the exact solution is                 . 
Solution: 

Write the above equation  in finite difference form as shown below: 

  
 

   
[                   ]       

The velocities are: 
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] 

The values of the function are computed from:         
  

 

 

     
  

 

 

          

Now if the region of the problem0 –   is divided into 10 elements, then the end conditions can be 

expressed as:                  . 

However, in this case and due to symmetry of end conditions, the solution can be obtained over half 

the domain i.e. 0 –    . The condition at the symmetry line defined by      is:            . 
All initial values are set to zero and iterations are started. After each iteration the velocities are 

compared with a reference of very small value of about     . When all velocities are less than the 

prescribed value, the process is terminated. The process may be terminated of course when the 

maximum value of the function (i.e. at center) exceeds certain bounds which indicate that the 

solution is becoming unstable. These bounds are defined by the inequalities       . After the 

solution has converged, a further check is made to guarantee that the solution has converged 

correctly. To facilitate this use is made of the fact that function increases from end to center. In fact 

this profile is achieved by the converged solution and therefore the solution is considered to be 

correct. 

The computer output is listed in Table   below. The solution was converged in 136 iterations. Note 

the close comparison between the approximate and exact solutions. 

Table   solution of example (1) 

 

Solution of an Example for Partial Differential Equations: 

Example    : 
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Using the dynamic relaxation (DR) method try to solve the following partial differential equation: 

   

   
  

   

   
                                           

Subject to boundary conditions:                                    ,          
        
The exact solution is as follows: 

                  
The Computer output is listed in Table   below. The first row of each set is the approximate 

solution whereas the second row is the exact value. The solution of this example was converged in 

73 iterations. 

Solution: 

Table   Solution of example ( ) 

 
The above equation  is written in finite differences form as follows: 

  
 

   
[                         ] 

 
 

   
[                         ] 

      

   Conclusions 

In comparison with other numerical methods, the dynamic relaxation technique has its own 

strengths and weaknesses. The advantages of the DR method are that: (a) the method has a simple 

algorithm so that it will simplify programming ; (b) the formulation is explicit. Therefore, the 

required memory is less than other techniques ; (c) this method has a high ability in intense 

nonlinear behaviors. The disadvantages and limitations of the DR methods are summarized as that: 

(a) in general, the method is unstable and needs some additional conditions to guarantee numerical 

stability ; (b) the iterations of the method are done in constant load. This causes some issues in limit 

points ; (c) in nonlinear analysis, with gentle stiffening, the number of iterations is much more in 

comparison with other techniques.        

In the dynamic relaxation technique, the static equations of the differential equations system will be 

converted to dynamic equations. Then the inertia and damping terms are added to all of these 

equations. The iterations of the dynamic relaxation technique can then be carried out in the 

following procedures: 

 . Set all initial values of variables to zeros. 

 . Compute the velocities. 



11 
 

 . Compute the displacements. 

 . Apply suitable boundary conditions for the displacements. 

 . Compute the required variables. 

 . Apply the appropriate boundary conditions for the required variables. 

 . Check if the convergence criterion is satisfied, if it is not repeat the steps from 2 to 6. 

A Dynamic Relaxation (DR) program based on finite differences has been developed for the 

analysis of one dimensional and two dimensional ordinary and partial differential equations. Finite 

differences coupled with dynamic relaxation method (DR) have been developed. FORTRAN 

programs have been compiled which they yielded results for a wide range of examples written and 

solved with the dynamic relaxation numerical method. These results were found to be in good 

agreement with those available in the literature of this research paper  and solved using the exact 

analytical solution. Therefore, a wide spectrum of comparisons between the dynamic relaxation 

numerical solutions and analytical exact solutions have been undertaken to demonstrate the 

accuracy of the DR program. The outcomes of these comparisons are found to be of acceptable 

accuracy. These results show that the convergence of the DR solution depends on several factors 

including the following:  

Time increment: It is a very important factor for speeding convergence and controlling numerical 

computations. 

Damping coefficients: Is that which produces critical motion. 

Boundary conditions: It is clear that the type of boundary condition is an important factor in 

determining the values of variables throughout the system.   

Mesh size: As the mesh size is reduced, the variables will be stable and smooth in values. 

Discretization of elements: Finer meshes reduce the discretization error, but at the same time 

increase the round off error due to the large number of calculations involved. 

Fictitious densities: They are used to evaluate the values at the far edges of the differential system. 

The fictitious densities vary from point to point over the system as well as for each iteration. 

Therefore, to stabilize the solution and to improve the convergence of the numerical computations 

fictitious densities must be applied. 
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