
8051805180518051 Tutorial Tutorial Tutorial Tutorial

1111

8051 Tutorial
http://www.hobbyprojects.com/8051_tutorial/

• Introduction
• Chapter 1 Types of Memory

o Types of Memory
o Code Memory
o Internal RAM
o External RAM
o Special Function Registers (SFRs)
o Bit Memory
o Register Banks

• Chapter 2 Special Function Registers
o What are SFRs?
o Types of SFRs
o Standard SFR Descriptions
o Non-Standard SFRs

• Chapter 3 Basic Registers
o "R" Registers
o Accumulator
o Data Pointer (DPTR)
o B Register
o Stack Pointer (SP)
o Program Counter (PC)

• Chapter 4 Addressing Modes
o Addressing Modes
o Immediate Addressing
o Direct Addressing
o Indirect Addressing
o External Direct Addressing
o External Indirect Addressing

• Chapter 5 Program Flow
o Program Flow
o Conditional Branching
o Direct Jumps
o Direct Calls
o Return from Subroutines
o Interrupts

• Chapter 6 Low Level Information
o Instruction Set, Timing and Low Level Information

• Chapter 7 Timers
o Timers
o How Timers Count
o Measuring Time
o Timer SFRs

� TMOD SFR
� Mode 0 - 13-bit Timer
� Mode 1 - 16-bit Timer

8051805180518051 Tutorial Tutorial Tutorial Tutorial

2222

� Mode 2 - Auto-reload Timer
� Mode 3 - Split Timer

� TCON SFR
o How Long do Timers Take to Count?
o Initializing a Timer
o Reading a Timer
o Reading a Timer Value
o Timing the Length of an Event
o Detecting a Timer Overflow
o Timers as Event Counters

• Chapter 8 Serial Port Operations
o Serial Port Operations
o Setting the Serial Baud Rate
o Setting the Serial Port Mode
o Reading from the Serial Port
o Writing to the Serial Port

• Chapter 9 Interrupts
o Interrupts
o Events that trigger Interrupts
o Setting Up Interrupts
o Polling Sequence
o Interrupt Priorities
o What Happens When an Interrupt Occurs?
o Serial Interrupts
o What Happens When an Interrupt Ends?
o Register Protection
o Common Bugs in Interrupts

• Chapter 10 Additional Features in 8052
o Introduction to 8052
o 256 bytes of additional Internal RAM
o New SFRs for 8052's Third Timer
o Timer 2 as a Baud-Rate Generator
o T2CON SFR
o Timer 2 in Auto-Reload Mode
o Timer 2 in Capture Mode
o Timer 2 Interrupt

• Reference 8051 / 8052 Instruction Set
o ACALL: Absolute Call
o ADD, ADDC: Add Accumulator (With Carry)
o AJMP: Absolute Jump
o ANL: Bitwise AND
o CJNE: Compare and Jump if Not Equal
o CLR: Clear Register
o CPL: Complement Register
o DA: Decimal Adjust
o DEC: Decrement Register
o DIV: Divide Accumulator by B
o DJNZ: Decrement Register and Jump if Not Zero
o INC: Increment Register

8051805180518051 Tutorial Tutorial Tutorial Tutorial

3333

o JB: Jump if Bit Set
o JBC: Jump if Bit Set and Clear Bit
o JC: Jump if Carry Set
o JMP: Jump to Address
o JNB: Jump if Bit Not Set
o JNC: Jump if Carry Not Set
o JNZ: Jump if Accumulator Not Zero
o JZ: Jump if Accumulator Zero
o LCALL: Long Call
o LJMP: Long Jump
o MOV: Move Memory
o MOVC: Move Code Memory
o MOVX: Move Extended Memory
o MUL: Multiply Accumulator by B
o NOP: No Operation
o ORL: Bitwise OR
o POP: Pop Value From Stack
o PUSH: Push Value Onto Stack
o RET: Return From Subroutine
o RETI: Return From Interrupt
o RL: Rotate Accumulator Left
o RLC: Rotate Accumulator Left Through Carry
o RR: Rotate Accumulator Right
o RRC: Rotate Accumulator Right Through Carry
o SETB: Set Bit
o SJMP: Short Jump
o SUBB: Subtract From Accumulator With Borrow
o SWAP: Swap Accumulator Nibbles
o XCH: Exchange Bytes
o XCHD: Exchange Digits
o XRL: Bitwise Exclusive OR
o Undefined: Undefined Instruction

• Appendix Numbering Systems

8051805180518051 Tutorial Tutorial Tutorial Tutorial

4444

Introduction
Despite it’s relatively old age, the 8051 is one of the most popular microcontrollers in
use today. Many derivative microcontrollers have since been developed that are
based on--and compatible with--the 8051. Thus, the ability to program an 8051 is an
important skill for anyone who plans to develop products that will take advantage of
microcontrollers.

Many web pages, books, and tools are available for the 8051 developer.

I hope the information contained in this document/web page will assist you in
mastering 8051 programming. While it is not my intention that this document
replaces a hardcopy book purchased at your local book store, it is entirely possible
that this may be the case. It is likely that this document contains everything you will
need to learn 8051 assembly language programming. Of course, this document is
free and you get what you pay for so if, after reading this document, you still are lost
you may find it necessary to buy a book.

This document is both a tutorial and a reference tool. The various chapters of the
document will explain the 8051 step by step. The chapters are targeted at people
who are attempting to learn 8051 assembly language programming. The appendices
are a useful reference tool that will assist both the novice programmer as well as the
experienced professional developer.

This document assumes the following:

A general knowledge of programming.

An understanding of decimal, hexadecimal, and binary number systems. For some
background information on these number systems, try appendix.

A general knowledge of hardware.

That is to say, no knowledge of the 8051 is assumed--however, it is assumed you’ve
done some amount of programming before, have a basic understanding of hardware,
and a firm grasp on the three numbering systems mentioned above. The concept of
converting a number from decimal to hexadecimal and/or to binary is not within the
scope of this document--and if you can’t do those types of conversions there are
probably some concepts that will not be completely understandable.

This document attempts to address the need of the typical programmer. For
example, there are certain features that are nifty and in some cases very useful--but
95% of the programmers will never use these features. To make this document more
applicable to the general programming public some details may be skimmed over
very briefly--or not at all.

8051805180518051 Tutorial Tutorial Tutorial Tutorial

5555

Chapter 1 Types of Memory

Types Of Memory

The 8051 has three very general types of memory. To effectively program the 8051
it is necessary to have a basic understanding of these memory types.

The memory types are illustrated in the following graphic. They are: On-Chip
Memory, External Code Memory, and External RAM.

On-Chip Memory refers to any memory (Code, RAM, or other) that physically exists
on the microcontroller itself. On-chip memory can be of several types, but we'll get
into that shortly.

External Code Memory is code (or program) memory that resides off-chip. This is
often in the form of an external EPROM.

External RAM is RAM memory that resides off-chip. This is often in the form of
standard static RAM or flash RAM.

Code Memory

Code memory is the memory that holds the actual 8051 program that is to be run.
This memory is limited to 64K and comes in many shapes and sizes: Code memory
may be found on-chip, either burned into the microcontroller as ROM or EPROM.
Code may also be stored completely off-chip in an external ROM or, more commonly,
an external EPROM. Flash RAM is also another popular method of storing a program.
Various combinations of these memory types may also be used--that is to say, it is
possible to have 4K of code memory on-chip and 64k of code memory off-chip in an
EPROM.

When the program is stored on-chip the 64K maximum is often reduced to 4k, 8k, or
16k. This varies depending on the version of the chip that is being used. Each

8051805180518051 Tutorial Tutorial Tutorial Tutorial

6666

version offers specific capabilities and one of the distinguishing factors from chip to
chip is how much ROM/EPROM space the chip has.

However, code memory is most commonly implemented as off-chip EPROM. This is
especially true in low-cost development systems and in systems developed by
students.

Programming Tip: Since code memory is restricted to 64K, 8051 programs
are limited to 64K. Some assemblers and compilers offer ways to get around
this limit when used with specially wired hardware. However, without such
special compilers and hardware, programs are limited to 64K.

Internal RAM

As mentioned at the beginning of this chapter, the 8051 includes a certain amount of
on-chip memory. On-chip memory is really one of two types: Internal RAM and
Special Function Register (SFR) memory. The layout of the 8051's internal memory
is presented in the following memory map:

As is illustrated in this map, the 8051 has a bank of 128 bytes of Internal RAM. This
Internal RAM is found on-chip on the 8051 so it is the fastest RAM available, and it is
also the most flexible in terms of reading, writing, and modifying it’s contents.
Internal RAM is volatile, so when the 8051 is reset this memory is cleared.

The 128 bytes of internal ram is subdivided as shown on the memory map. The first
8 bytes (00h - 07h) are "register bank 0". By manipulating certain SFRs, a program
may choose to use register banks 1, 2, or 3. These alternative register banks are
located in internal RAM in addresses 08h through 1Fh. We'll discuss "register banks"

8051805180518051 Tutorial Tutorial Tutorial Tutorial

7777

more in a later chapter. For now it is sufficient to know that they "live" and are part
of internal RAM.

Bit Memory also lives and is part of internal RAM. We'll talk more about bit memory
very shortly, but for now just keep in mind that bit memory actually resides in
internal RAM, from addresses 20h through 2Fh.

The 80 bytes remaining of Internal RAM, from addresses 30h through 7Fh, may be
used by user variables that need to be accessed frequently or at high-speed. This
area is also utilized by the microcontroller as a storage area for the operating stack.
This fact severely limits the 8051’s stack since, as illustrated in the memory map,
the area reserved for the stack is only 80 bytes--and usually it is less since this 80
bytes has to be shared between the stack and user variables.

External RAM

As an obvious opposite of Internal RAM, the 8051 also supports what is called
External RAM.

As the name suggests, External RAM is any random access memory which is found
off-chip. Since the memory is off-chip it is not as flexible in terms of accessing, and
is also slower. For example, to increment an Internal RAM location by 1 requires only
1 instruction and 1 instruction cycle. To increment a 1-byte value stored in External
RAM requires 4 instructions and 7 instruction cycles. In this case, external memory is
7 times slower!

What External RAM loses in speed and flexibility it gains in quantity. While Internal
RAM is limited to 128 bytes (256 bytes with an 8052), the 8051 supports External
RAM up to 64K.

Programming Tip: The 8051 may only address 64k of RAM. To expand RAM
beyond this limit requires programming and hardware tricks. You may have to
do this "by hand" since many compilers and assemblers, while providing
support for programs in excess of 64k, do not support more than 64k of RAM.
This is rather strange since it has been my experience that programs can
usually fit in 64k but often RAM is what is lacking. Thus if you need more than
64k of RAM, check to see if your compiler supports it-- but if it doesn't, be
prepared to do it by hand.

Special Function Registers (SFRs)

The 8051 is a flexible microcontroller with a relatively large number of modes of
operations. Your program may inspect and/or change the operating mode of the
8051 by manipulating the values of the 8051's Special Function Registers (SFRs).

SFRs are accessed as if they were normal Internal RAM. The only difference is that
Internal RAM is from address 00h through 7Fh whereas SFR registers exist in the
address range of 80h through FFh.

8051805180518051 Tutorial Tutorial Tutorial Tutorial

8888

Each SFR has an address (80h through FFh) and a name. The following chart
provides a graphical presentation of the 8051's SFRs, their names, and their address.

As you can see, although the address range of 80h through FFh offers 128 possible
addresses, there are only 21 SFRs in a standard 8051. All other addresses in the SFR
range (80h through FFh) are considered invalid. Writing to or reading from these
registers may produce undefined values or behavior.

Programming Tip: It is recommended that you not read or write to SFR
addresses that have not been assigned to an SFR. Doing so may provoke
undefined behavior and may cause your program to be incompatible with
other 8051-derivatives that use the given SFR for some other purpose.

Bit Memory

The 8051, being a communications-oriented microcontroller, gives the user the
ability to access a number of bit variables. These variables may be either 1 or 0.

There are 128 bit variables available to the user, numbered 00h through 7Fh. The
user may make use of these variables with commands such as SETB and CLR. For
example, to set bit number 24 (hex) to 1 you would execute the instruction:

SETB 24h

It is important to note that Bit Memory is really a part of Internal RAM. In fact, the
128 bit variables occupy the 16 bytes of Internal RAM from 20h through 2Fh. Thus, if
you write the value FFh to Internal RAM address 20h you’ve effectively set bits 00h
through 07h. That is to say that:

8051805180518051 Tutorial Tutorial Tutorial Tutorial

9999

MOV 20h,#0FFh

is equivalent to:

SETB 00h
SETB 01h
SETB 02h
SETB 03h
SETB 04h
SETB 05h
SETB 06h
SETB 07h

As illustrated above, bit memory isn’t really a new type of memory. It’s really just a
subset of Internal RAM. But since the 8051 provides special instructions to access
these 16 bytes of memory on a bit by bit basis it is useful to think of it as a separate
type of memory. However, always keep in mind that it is just a subset of Internal
RAM--and that operations performed on Internal RAM can change the values of the
bit variables.

Programming Tip: If your program does not use bit variables, you may use
Internal RAM locations 20h through 2Fh for your own use. But if you plan to
use bit variables, be very careful about using addresses from 20h through 2Fh
as you may end up overwriting the value of your bits!

Bit variables 00h through 7Fh are for user-defined functions in their programs.
However, bit variables 80h and above are actually used to access certain SFRs on a
bit-by-bit basis. For example, if output lines P0.0 through P0.7 are all clear (0) and
you want to turn on the P0.0 output line you may either execute:

MOV P0,#01h

or you may execute:

SETB 80h

Both these instructions accomplish the same thing. However, using the SETB
command will turn on the P0.0 line without affecting the status of any of the other
P0 output lines. The MOV command effectively turns off all the other output lines
which, in some cases, may not be acceptable.

Programming Tip: By default, the 8051 initializes the Stack Pointer (SP) to
07h when the microcontroller is booted. This means that the stack will start at
address 08h and expand upwards. If you will be using the alternate register
banks (banks 1, 2 or 3) you must initialize the stack pointer to an address
above the highest register bank you will be using, otherwise the stack will
overwrite your alternate register banks. Similarly, if you will be using bit
variables it is usually a good idea to initialize the stack pointer to some value
greater than 2Fh to guarantee that your bit variables are protected from the
stack.

8051805180518051 Tutorial Tutorial Tutorial Tutorial

10101010

Register Banks

The 8051 uses 8 "R" registers which are used in many of its instructions. These "R"
registers are numbered from 0 through 7 (R0, R1, R2, R3, R4, R5, R6, and R7).
These registers are generally used to assist in manipulating values and moving data
from one memory location to another. For example, to add the value of R4 to the
Accumulator, we would execute the following instruction:

ADD A,R4

Thus if the Accumulator (A) contained the value 6 and R4 contained the value 3, the
Accumulator would contain the value 9 after this instruction was executed.

However, as the memory map shows, the "R" Register R4 is really part of Internal
RAM. Specifically, R4 is address 04h. This can be seen in the memory map. Thus the
above instruction accomplishes the same thing as the following operation:

ADD A, 04h

This instruction adds the value found in Internal RAM address 04h to the value of the
Accumulator, leaving the result in the Accumulator. Since R4 is really Internal RAM
04h, the above instruction effectively accomplished the same thing.

But watch out! As the memory map shows, the 8051 has four distinct register banks.
When the 8051 is first booted up, register bank 0 (addresses 00h through 07h) is
used by default. However, your program may instruct the 8051 to use one of the
alternate register banks; i.e., register banks 1, 2, or 3. In this case, R4 will no longer
be the same as Internal RAM address 04h. For example, if your program instructs
the 8051 to use register bank 3, "R" register R4 will now be synonomous with
Internal RAM address 1Ch.

The concept of register banks adds a great level of flexibility to the 8051, especially
when dealing with interrupts (we'll talk about interrupts later). However, always
remember that the register banks really reside in the first 32 bytes of Internal RAM.

Programming Tip: If you only use the first register bank (i.e. bank 0), you
may use Internal RAM locations 08h through 1Fh for your own use. But if you
plan to use register banks 1, 2, or 3, be very careful about using addresses
below 20h as you may end up overwriting the value of your "R" registers!

8051805180518051 Tutorial Tutorial Tutorial Tutorial

11111111

Chapter 2 Special Function Registers

What are SFRs?

The 8051 is a flexible microcontroller with a relatively large number of modes of
operations. Your program may inspect and/or change the operating mode of the
8051 by manipulating the values of the 8051's Special Function Registers (SFRs).

SFRs are accessed as if they were normal Internal RAM. The only difference is that
Internal RAM is from address 00h through 7Fh whereas SFR registers exist in the
address range of 80h through FFh.

Each SFR has an address (80h through FFh) and a name. The following chart
provides a graphical presentation of the 8051's SFRs, their names, and their address.

As you can see, although the address range of 80h through FFh offer 128 possible
addresses, there are only 21 SFRs in a standard 8051. All other addresses in the SFR
range (80h through FFh) are considered invalid. Writing to or reading from these
registers may produce undefined values or behavior.

Programming Tip: It is recommended that you not read or write to SFR
addresses that have not been assigned to an SFR. Doing so may provoke
undefined behavior and may cause your program to be incompatible with
other 8051-derivatives that use the given SFR for some other purpose.

Types of SFRs

8051805180518051 Tutorial Tutorial Tutorial Tutorial

12121212

As mentioned in the chart itself, the SFRs that have a yellow background are SFRs
related to the I/O ports. The 8051 has four I/O ports of 8 bits, for a total of 32 I/O
lines. Whether a given I/O line is high or low and the value read from the line are
controlled by the SFRs in pink.

The SFRs with pink backgrounds are SFRs which in some way control the operation
or the configuration of some aspect of the 8051. For example, TCON controls the
timers, SCON controls the serial port.

The remaining SFRs, with red backgrounds, are "other SFRs." These SFRs can be
thought of as auxillary SFRs in the sense that they don't directly configure the 8051
but obviously the 8051 cannot operate without them. For example, once the serial
port has been configured using SCON, the program may read or write to the serial
port using the SBUF register.

Programming Tip: The SFRs whose names appear in red in the chart above
are SFRs that may be accessed via bit operations (i.e., using the SETB and
CLR instructions). The other SFRs cannot be accessed using bit operations. As
you can see, all SFRs that whose addresses are divisible by 8 can be accessed
with bit operations.

Standard SFR Descriptions

This section will endeavor to quickly overview each of the standard SFRs found in the
above SFR chart map. It is not the intention of this section to fully explain the
functionality of each SFR--this information will be covered in separate chapters of the
tutorial. This section is to just give you a general idea of what each SFR does.

8051805180518051 Tutorial Tutorial Tutorial Tutorial

13131313

P0 (Port 0, Address 80h, Bit-Addressable): This is input/output port 0. Each bit
of this SFR corresponds to one of the pins on the microcontroller. For example, bit 0
of port 0 is pin P0.0, bit 7 is pin P0.7. Writing a value of 1 to a bit of this SFR will
send a high level on the corresponding I/O pin whereas a value of 0 will bring it to a
low level.

Programming Tip: While the 8051 has four I/O port (P0, P1, P2, and P3), if
your hardware uses external RAM or external code memory (i.e., your
program is stored in an external ROM or EPROM chip or if you are using
external RAM chips) you may not use P0 or P2. This is because the 8051 uses
ports P0 and P2 to address the external memory. Thus if you are using
external RAM or code memory you may only use ports P1 and P3 for your
own use.

SP (Stack Pointer, Address 81h): This is the stack pointer of the microcontroller.
This SFR indicates where the next value to be taken from the stack will be read from
in Internal RAM. If you push a value onto the stack, the value will be written to the
address of SP + 1. That is to say, if SP holds the value 07h, a PUSH instruction will
push the value onto the stack at address 08h. This SFR is modified by all instructions
which modify the stack, such as PUSH, POP, LCALL, RET, RETI, and whenever
interrupts are provoked by the microcontroller.

Programming Tip: The SP SFR, on startup, is initialized to 07h. This means
the stack will start at 08h and start expanding upward in internal RAM. Since
alternate register banks 1, 2, and 3 as well as the user bit variables occupy
internal RAM from addresses 08h through 2Fh, it is necessary to initialize SP
in your program to some other value if you will be using the alternate register
banks and/or bit memory. It's not a bad idea to initialize SP to 2Fh as the first
instruction of every one of your programs unless you are 100% sure you will
not be using the register banks and bit variables.

DPL/DPH (Data Pointer Low/High, Addresses 82h/83h): The SFRs DPL and
DPH work together to represent a 16-bit value called the Data Pointer. The data
pointer is used in operations regarding external RAM and some instructions involving
code memory. Since it is an unsigned two-byte integer value, it can represent values
from 0000h to FFFFh (0 through 65,535 decimal).

Programming Tip: DPTR is really DPH and DPL taken together as a 16-bit
value. In reality, you almost always have to deal with DPTR one byte at a
time. For example, to push DPTR onto the stack you must first push DPL and
then DPH. You can't simply plush DPTR onto the stack. Additionally, there is
an instruction to "increment DPTR." When you execute this instruction, the
two bytes are operated upon as a 16-bit value. However, there is no
instruction that decrements DPTR. If you wish to decrement the value of
DPTR, you must write your own code to do so.

PCON (Power Control, Addresses 87h): The Power Control SFR is used to control
the 8051's power control modes. Certain operation modes of the 8051 allow the
8051 to go into a type of "sleep" mode which requires much less power. These
modes of operation are controlled through PCON. Additionally, one of the bits in
PCON is used to double the effective baud rate of the 8051's serial port.

8051805180518051 Tutorial Tutorial Tutorial Tutorial

14141414

TCON (Timer Control, Addresses 88h, Bit-Addressable): The Timer Control SFR
is used to configure and modify the way in which the 8051's two timers operate. This
SFR controls whether each of the two timers is running or stopped and contains a
flag to indicate that each timer has overflowed. Additionally, some non-timer related
bits are located in the TCON SFR. These bits are used to configure the way in which
the external interrupts are activated and also contain the external interrupt flags
which are set when an external interrupt has occured.

TMOD (Timer Mode, Addresses 89h): The Timer Mode SFR is used to configure
the mode of operation of each of the two timers. Using this SFR your program may
configure each timer to be a 16-bit timer, an 8-bit autoreload timer, a 13-bit timer,
or two separate timers. Additionally, you may configure the timers to only count
when an external pin is activated or to count "events" that are indicated on an
external pin.

TL0/TH0 (Timer 0 Low/High, Addresses 8Ah/8Ch): These two SFRs, taken
together, represent timer 0. Their exact behavior depends on how the timer is
configured in the TMOD SFR; however, these timers always count up. What is
configurable is how and when they increment in value.

TL1/TH1 (Timer 1 Low/High, Addresses 8Bh/8Dh): These two SFRs, taken
together, represent timer 1. Their exact behavior depends on how the timer is
configured in the TMOD SFR; however, these timers always count up. What is
configurable is how and when they increment in value.

P1 (Port 1, Address 90h, Bit-Addressable): This is input/output port 1. Each bit
of this SFR corresponds to one of the pins on the microcontroller. For example, bit 0
of port 1 is pin P1.0, bit 7 is pin P1.7. Writing a value of 1 to a bit of this SFR will
send a high level on the corresponding I/O pin whereas a value of 0 will bring it to a
low level.

SCON (Serial Control, Addresses 98h, Bit-Addressable): The Serial Control SFR
is used to configure the behavior of the 8051's on-board serial port. This SFR
controls the baud rate of the serial port, whether the serial port is activated to
receive data, and also contains flags that are set when a byte is successfully sent or
received.

Programming Tip: To use the 8051's on-board serial port, it is generally
necessary to initialize the following SFRs: SCON, TCON, and TMOD. This is
because SCON controls the serial port. However, in most cases the program
will wish to use one of the timers to establish the serial port's baud rate. In
this case, it is necessary to configure timer 1 by initializing TCON and TMOD.

SBUF (Serial Control, Addresses 99h): The Serial Buffer SFR is used to send and
receive data via the on-board serial port. Any value written to SBUF will be sent out
the serial port's TXD pin. Likewise, any value which the 8051 receives via the serial
port's RXD pin will be delivered to the user program via SBUF. In other words, SBUF
serves as the output port when written to and as an input port when read from.

P2 (Port 2, Address A0h, Bit-Addressable): This is input/output port 2. Each bit
of this SFR corresponds to one of the pins on the microcontroller. For example, bit 0
of port 2 is pin P2.0, bit 7 is pin P2.7. Writing a value of 1 to a bit of this SFR will

8051805180518051 Tutorial Tutorial Tutorial Tutorial

15151515

send a high level on the corresponding I/O pin whereas a value of 0 will bring it to a
low level.

Programming Tip: While the 8051 has four I/O port (P0, P1, P2, and P3), if
your hardware uses external RAM or external code memory (i.e., your
program is stored in an external ROM or EPROM chip or if you are using
external RAM chips) you may not use P0 or P2. This is because the 8051 uses
ports P0 and P2 to address the external memory. Thus if you are using
external RAM or code memory you may only use ports P1 and P3 for your
own use.

IE (Interrupt Enable, Addresses A8h): The Interrupt Enable SFR is used to
enable and disable specific interrupts. The low 7 bits of the SFR are used to
enable/disable the specific interrupts, where as the highest bit is used to enable or
disable ALL interrupts. Thus, if the high bit of IE is 0 all interrupts are disabled
regardless of whether an individual interrupt is enabled by setting a lower bit.

P3 (Port 3, Address B0h, Bit-Addressable): This is input/output port 3. Each bit
of this SFR corresponds to one of the pins on the microcontroller. For example, bit 0
of port 3 is pin P3.0, bit 7 is pin P3.7. Writing a value of 1 to a bit of this SFR will
send a high level on the corresponding I/O pin whereas a value of 0 will bring it to a
low level.

IP (Interrupt Priority, Addresses B8h, Bit-Addressable): The Interrupt Priority
SFR is used to specify the relative priority of each interrupt. On the 8051, an
interrupt may either be of low (0) priority or high (1) priority. An interrupt may only
interrupt interrupts of lower priority. For example, if we configure the 8051 so that
all interrupts are of low priority except the serial interrupt, the serial interrupt will
always be able to interrupt the system, even if another interrupt is currently
executing. However, if a serial interrupt is executing no other interrupt will be able to
interrupt the serial interrupt routine since the serial interrupt routine has the highest
priority.

PSW (Program Status Word, Addresses D0h, Bit-Addressable): The Program
Status Word is used to store a number of important bits that are set and cleared by
8051 instructions. The PSW SFR contains the carry flag, the auxiliary carry flag, the
overflow flag, and the parity flag. Additionally, the PSW register contains the register
bank select flags which are used to select which of the "R" register banks are
currently selected.

Programming Tip: If you write an interrupt handler routine, it is a very good
idea to always save the PSW SFR on the stack and restore it when your
interrupt is complete. Many 8051 instructions modify the bits of PSW. If your
interrupt routine does not guarantee that PSW is the same upon exit as it was
upon entry, your program is bound to behave rather erratically and
unpredictably--and it will be tricky to debug since the behavior will tend not
to make any sense.

ACC (Accumulator, Addresses E0h, Bit-Addressable): The Accumulator is one of
the most-used SFRs on the 8051 since it is involved in so many instructions. The
Accumulator resides as an SFR at E0h, which means the instruction MOV A,#20h is
really the same as MOV E0h,#20h. However, it is a good idea to use the first

8051805180518051 Tutorial Tutorial Tutorial Tutorial

16161616

method since it only requires two bytes whereas the second option requires three
bytes.

B (B Register, Addresses F0h, Bit-Addressable): The "B" register is used in two
instructions: the multiply and divide operations. The B register is also commonly
used by programmers as an auxiliary register to temporarily store values.

Non-Standard SFRs

The chart above is a summary of all the SFRs that exist in a standard 8051. All
derivative microcontrollers of the 8051 must support these basic SFRs in order to
maintain compatibility with the underlying MSCS51 standard.

A common practice when semiconductor firms wish to develop a new 8051 derivative
is to add additional SFRs to support new functions that exist in the new chip.

For example, the Dallas Semiconductor DS80C320 is upwards compatible with the
8051. This means that any program that runs on a standard 8051 should run without
modification on the DS80C320. This means that all the SFRs defined above also
apply to the Dallas component.

However, since the DS80C320 provides many new features that the standard 8051
does not, there must be some way to control and configure these new features. This
is accomplished by adding additional SFRs to those listed here. For example, since
the DS80C320 supports two serial ports (as opposed to just one on the 8051), the
SFRs SBUF2 and SCON2 have been added. In addition to all the SFRs listed above,
the DS80C320 also recognizes these two new SFRs as valid and uses their values to
determine the mode of operation of the secondary serial port. Obviously, these new
SFRs have been assigned to SFR addresses that were unused in the original 8051. In
this manner, new 8051 derivative chips may be developed which will run existing
8051 programs.

Programming Tip: If you write a program that utilizes new SFRs that are
specific to a given derivative chip and not included in the above SFR list, your
program will not run properly on a standard 8051 where that SFR does not
exist. Thus, only use non-standard SFRs if you are sure that your program
will only have to run on that specific microcontroller. Likewise, if you write
code that uses non-standard SFRs and subsequently share it with a third-
party, be sure to let that party know that your code is using non-standard
SFRs to save them the headache of realizing that due to strange behavior at
run-time.

8051805180518051 Tutorial Tutorial Tutorial Tutorial

17171717

Chapter 3 Basic Registers

"R" Registers

The "R" registers are a set of eight registers that are named R0, R1, etc. up to and
including R7.

These registers are used as auxiliary registers in many operations. To continue with
the above example, perhaps you are adding 10 and 20. The original number 10 may
be stored in the Accumulator whereas the value 20 may be stored in, say, register
R4. To process the addition you would execute the command:

ADD A,R4

After executing this instruction the Accumulator will contain the value 30.

You may think of the "R" registers as very important auxiliary, or "helper", registers.
The Accumulator alone would not be very useful if it were not for these "R" registers.

The "R" registers are also used to temporarily store values. For example, let’s say
you want to add the values in R1 and R2 together and then subtract the values of R3
and R4. One way to do this would be:

MOV A,R3 ;Move the value of R3 into the accumulator
ADD A,R4 ;Add the value of R4
MOV R5,A ;Store the resulting value temporarily in R5
MOV A,R1 ;Move the value of R1 into the accumulator
ADD A,R2 ;Add the value of R2
SUBB A,R5 ;Subtract the value of R5 (which now contains R3 + R4)

As you can see, we used R5 to temporarily hold the sum of R3 and R4. Of course,
this isn’t the most efficient way to calculate (R1+R2) - (R3 +R4) but it does illustrate
the use of the "R" registers as a way to store values temporarily.

Accumulator

If you’ve worked with any other assembly languages you will be familiar with the
concept of an Accumulator register.

The Accumulator, as it’s name suggests, is used as a general register to accumulate
the results of a large number of instructions. It can hold an 8-bit (1-byte) value and
is the most versatile register the 8051 has due to the shear number of instructions
that make use of the accumulator. More than half of the 8051’s 255 instructions
manipulate or use the accumulator in some way.

For example, if you want to add the number 10 and 20, the resulting 30 will be
stored in the Accumulator. Once you have a value in the Accumulator you may
continue processing the value or you may store it in another register or in memory.

8051805180518051 Tutorial Tutorial Tutorial Tutorial

18181818

Data Pointer (DPTR)

The Data Pointer (DPTR) is the 8051’s only user-accessible 16-bit (2-byte) register.
The Accumulator, "R" registers, and "B" register are all 1-byte values.

DPTR, as the name suggests, is used to point to data. It is used by a number of
commands which allow the 8051 to access external memory. When the 8051
accesses external memory it will access external memory at the address indicated by
DPTR.

While DPTR is most often used to point to data in external memory, many
programmers often take advantage of the fact that it’s the only true 16-bit register
available. It is often used to store 2-byte values which have nothing to do with
memory locations.

B Register

The "B" register is very similar to the Accumulator in the sense that it may hold an
8-bit (1-byte) value.

The "B" register is only used by two 8051 instructions: MUL AB and DIV AB. Thus, if
you want to quickly and easily multiply or divide A by another number, you may
store the other number in "B" and make use of these two instructions.

Aside from the MUL and DIV instructions, the "B" register is often used as yet
another temporary storage register much like a ninth "R" register.

Program Counter (PC)

The Program Counter (PC) is a 2-byte address which tells the 8051 where the next
instruction to execute is found in memory. When the 8051 is initialized PC always
starts at 0000h and is incremented each time an instruction is executed. It is
important to note that PC isn’t always incremented by one. Since some instructions
require 2 or 3 bytes the PC will be incremented by 2 or 3 in these cases.

The Program Counter is special in that there is no way to directly modify it’s value.
That is to say, you can’t do something like PC=2430h. On the other hand, if you
execute LJMP 2430h you’ve effectively accomplished the same thing.

It is also interesting to note that while you may change the value of PC (by executing
a jump instruction, etc.) there is no way to read the value of PC. That is to say, there
is no way to ask the 8051 "What address are you about to execute?" As it turns out,
this is not completely true: There is one trick that may be used to determine the
current value of PC. This trick will be covered in a later chapter.

Stack Pointer (SP)

8051805180518051 Tutorial Tutorial Tutorial Tutorial

19191919

The Stack Pointer, like all registers except DPTR and PC, may hold an 8-bit (1-byte)
value. The Stack Pointer is used to indicate where the next value to be removed from
the stack should be taken from.

When you push a value onto the stack, the 8051 first increments the value of SP and
then stores the value at the resulting memory location.

When you pop a value off the stack, the 8051 returns the value from the memory
location indicated by SP, and then decrements the value of SP.

This order of operation is important. When the 8051 is initialized SP will be initialized
to 07h. If you immediately push a value onto the stack, the value will be stored in
Internal RAM address 08h. This makes sense taking into account what was
mentioned two paragraphs above: First the 8051 will increment the value of SP
(from 07h to 08h) and then will store the pushed value at that memory address
(08h).

SP is modified directly by the 8051 by six instructions: PUSH, POP, ACALL, LCALL,
RET, and RETI. It is also used intrinsically whenever an interrupt is triggered (more
on interrupts later. Don’t worry about them for now!).

8051805180518051 Tutorial Tutorial Tutorial Tutorial

20202020

Chapter 4 Addressing Modes

Addressing Modes

An "addressing mode" refers to how you are addressing a given memory location. In
summary, the addressing modes are as follows, with an example of each:

Immediate Addressing MOV A,#20h

Direct Addressing MOV A,30h

Indirect Addressing MOV A,@R0

External Direct Addressing MOVX A,@DPTR

External Indirect Addressing MOVC A,@A+DPTR

Each of these addressing modes provides important flexibility.

Immediate Addressing

Immediate addressing is so-named because the value to be stored in memory
immediately follows the operation code in memory. That is to say, the instruction
itself dictates what value will be stored in memory.

For example, the instruction:

MOV A,#20h

This instruction uses Immediate Addressing because the Accumulator will be loaded
with the value that immediately follows; in this case 20 (hexidecimal).

Immediate addressing is very fast since the value to be loaded is included in the
instruction. However, since the value to be loaded is fixed at compile-time it is not
very flexible.

Direct Addressing

Direct addressing is so-named because the value to be stored in memory is obtained
by directly retrieving it from another memory location. For example:

MOV A,30h

This instruction will read the data out of Internal RAM address 30 (hexadecimal) and
store it in the Accumulator.

Direct addressing is generally fast since, although the value to be loaded isn’t
included in the instruction, it is quickly accessible since it is stored in the 8051’s
Internal RAM. It is also much more flexible than Immediate Addressing since the
value to be loaded is whatever is found at the given address--which may be variable.

8051805180518051 Tutorial Tutorial Tutorial Tutorial

21212121

Also, it is important to note that when using direct addressing any instruction which
refers to an address between 00h and 7Fh is referring to Internal Memory. Any
instruction which refers to an address between 80h and FFh is referring to the SFR
control registers that control the 8051 microcontroller itself.

The obvious question that may arise is, "If direct addressing an address from 80h
through FFh refers to SFRs, how can I access the upper 128 bytes of Internal RAM
that are available on the 8052?" The answer is: You can’t access them using direct
addressing. As stated, if you directly refer to an address of 80h through FFh you will
be referring to an SFR. However, you may access the 8052’s upper 128 bytes of RAM
by using the next addressing mode, "indirect addressing."

Indirect Addressing

Indirect addressing is a very powerful addressing mode which in many cases
provides an exceptional level of flexibility. Indirect addressing is also the only way to
access the extra 128 bytes of Internal RAM found on an 8052.

Indirect addressing appears as follows:

MOV A,@R0

This instruction causes the 8051 to analyze the value of the R0 register. The 8051
will then load the accumulator with the value from Internal RAM which is found at
the address indicated by R0.

For example, let’s say R0 holds the value 40h and Internal RAM address 40h holds
the value 67h. When the above instruction is executed the 8051 will check the value
of R0. Since R0 holds 40h the 8051 will get the value out of Internal RAM address
40h (which holds 67h) and store it in the Accumulator. Thus, the Accumulator ends
up holding 67h.

Indirect addressing always refers to Internal RAM; it never refers to an SFR. Thus, in
a prior example we mentioned that SFR 99h can be used to write a value to the
serial port. Thus one may think that the following would be a valid solution to write
the value ‘1’ to the serial port:

MOV R0,#99h ;Load the address of the serial port
MOV @R0,#01 h ;Send 01 to the serial port -- WRONG!!

This is not valid. Since indirect addressing always refers to Internal RAM these two
instructions would write the value 01h to Internal RAM address 99h on an 8052. On
an 8051 these two instructions would produce an undefined result since the 8051
only has 128 bytes of Internal RAM.

External Direct Addressing

8051805180518051 Tutorial Tutorial Tutorial Tutorial

22222222

External Memory is accessed using a suite of instructions which use what I call
"External Direct" addressing. I call it this because it appears to be direct addressing,
but it is used to access external memory rather than internal memory.

There are only two commands that use External Direct addressing mode:

MOVX A,@DPTR
MOVX @DPTR,A

As you can see, both commands utilize DPTR. In these instructions, DPTR must first
be loaded with the address of external memory that you wish to read or write. Once
DPTR holds the correct external memory address, the first command will move the
contents of that external memory address into the Accumulator. The second
command will do the opposite: it will allow you to write the value of the Accumulator
to the external memory address pointed to by DPTR.

External Indirect Addressing

External memory can also be accessed using a form of indirect addressing which I
call External Indirect addressing. This form of addressing is usually only used in
relatively small projects that have a very small amount of external RAM. An example
of this addressing mode is:

MOVX @R0,A

Once again, the value of R0 is first read and the value of the Accumulator is written
to that address in External RAM. Since the value of @R0 can only be 00h through
FFh the project would effectively be limited to 256 bytes of External RAM. There are
relatively simple hardware/software tricks that can be implemented to access more
than 256 bytes of memory using External Indirect addressing; however, it is usually
easier to use External Direct addressing if your project has more than 256 bytes of
External RAM.

8051805180518051 Tutorial Tutorial Tutorial Tutorial

23232323

Chapter 5 Program Flow

Program Flow

When an 8051 is first initialized, it resets the PC to 0000h. The 8051 then begins to
execute instructions sequentially in memory unless a program instruction causes the
PC to be otherwise altered. There are various instructions that can modify the value
of the PC; specifically, conditional branching instructions, direct jumps and calls, and
"returns" from subroutines. Additionally, interrupts, when enabled, can cause the
program flow to deviate from its otherwise sequential scheme.

Conditional Branching

The 8051 contains a suite of instructions which, as a group, are referred to as
"conditional branching" instructions. These instructions cause program execution to
follow a non-sequential path if a certain condition is true.

Take, for example, the JB instruction. This instruction means "Jump if Bit Set." An
example of the JB instruction might be:

JB 45h,HELLO

NOP

HELLO:

In this case, the 8051 will analyze the contents of bit 45h. If the bit is set program
execution will jump immediately to the label HELLO, skipping the NOP instruction. If
the bit is not set the conditional branch fails and program execution continues, as
usual, with the NOP instruction which follows.

Conditional branching is really the fundamental building block of program logic since
all "decisions" are accomplished by using conditional branching. Conditional
branching can be thought of as the "IF...THEN" structure in 8051 assembly language.

An important note worth mentioning about conditional branching is that the program
may only branch to instructions located within 128 bytes prior to or 127 bytes
following the address which follows the conditional branch instruction. This means
that in the above example the label HELLO must be within +/- 128 bytes of the
memory address which contains the conditional branching instruction.

Direct Jumps

While conditional branching is extremely important, it is often necessary to make a
direct branch to a given memory location without basing it on a given logical
decision. This is equivalent to saying "Goto" in BASIC. In this case you want the
program flow to continue at a given memory address without considering any
conditions.

8051805180518051 Tutorial Tutorial Tutorial Tutorial

24242424

This is accomplished in the 8051 using "Direct Jump and Call" instructions. As
illustrated in the last paragraph, this suite of instructions causes program flow to
change unconditionally.

Consider the example:

LJMP NEW_ADDRESS

.

.

.

NEW_ADDRESS:

The LJMP instruction in this example means "Long Jump." When the 8051 executes
this instruction the PC is loaded with the address of NEW_ADDRESS and program
execution continues sequentially from there.

The obvious difference between the Direct Jump and Call instructions and the
conditional branching is that with Direct Jumps and Calls program flow always
changes. With conditional branching program flow only changes if a certain condition
is true.

It is worth mentioning that, aside from LJMP, there are two other instructions which
cause a direct jump to occur: the SJMP and AJMP commands. Functionally, these two
commands perform the exact same function as the LJMP command--that is to say,
they always cause program flow to continue at the address indicated by the
command. However, SJMP and AJMP differ in the following ways:

• The SJMP command, like the conditional branching instructions, can only
jump to an address within +/- 128 bytes of the SJMP command.

• The AJMP command can only jump to an address that is in the same 2k block
of memory as the AJMP command. That is to say, if the AJMP command is at
code memory location 650h, it can only do a jump to addresses 0000h
through 07FFh (0 through 2047, decimal).

You may be asking yourself, "Why would I want to use the SJMP or AJMP command
which have restrictions as to how far they can jump if they do the same thing as the
LJMP command which can jump anywhere in memory?" The answer is simple: The
LJMP command requires three bytes of code memory whereas both the SJMP and
AJMP commands require only two. Thus, if you are developing an application that has
memory restrictions you can often save quite a bit of memory using the 2-byte
AJMP/SJMP instructions instead of the 3-byte instruction.

Recently, I wrote a program that required 2100 bytes of memory but I had a
memory restriction of 2k (2048 bytes). I did a search/replace changing all LJMPs to
AJMPs and the program shrunk down to 1950 bytes. Thus, without changing any
logic whatsoever in my program I saved 150 bytes and was able to meet my 2048
byte memory restriction.

NOTE: Some quality assemblers will actually do the above conversion for you
automatically. That is, they’ll automatically change your LJMPs to SJMPs whenever

8051805180518051 Tutorial Tutorial Tutorial Tutorial

25252525

possible. This is a nifty and very powerful capability that you may want to look for in
an assembler if you plan to develop many projects that have relatively tight memory
restrictions.

Direct Calls

Another operation that will be familiar to seasoned programmers is the LCALL
instruction. This is similar to a "Gosub" command in Basic.

When the 8051 executes an LCALL instruction it immediately pushes the current
Program Counter onto the stack and then continues executing code at the address
indicated by the LCALL instruction.

Return from Subroutines

Another structure that can cause program flow to change is the "Return from
Subroutine" instruction, known as RET in 8051 Assembly Language.

The RET instruction, when executed, returns to the address following the instruction
that called the given subroutine. More accurately, it returns to the address that is
stored on the stack.

The RET command is direct in the sense that it always changes program flow without
basing it on a condition, but is variable in the sense that where program flow
continues can be different each time the RET instruction is executed depending on
from where the subroutine was called originally.

Interrupts

An interrupt is a special feature which allows the 8051 to provide the illusion of
"multi-tasking," although in reality the 8051 is only doing one thing at a time. The
word "interrupt" can often be substituted with the word "event."

An interrupt is triggered whenever a corresponding event occurs. When the event
occurs, the 8051 temporarily puts "on hold" the normal execution of the program
and executes a special section of code referred to as an interrupt handler. The
interrupt handler performs whatever special functions are required to handle the
event and then returns control to the 8051 at which point program execution
continues as if it had never been interrupted.

The topic of interrupts is somewhat tricky and very important. For that reason, an
entire chapter will be dedicated to the topic. For now, suffice it to say that Interrupts
can cause program flow to change.

8051805180518051 Tutorial Tutorial Tutorial Tutorial

26262626

Chapter 6 Low Level Information

Instruction Set, Timing and Low Level Information

The 8051 operates based on an external crystal. This is an electrical device which,
when energy is applied, emits pulses at a fixed frequency. One can find crystals of
virtually any frequency depending on the application requirements. When using an
8051, the most common crystal frequencies are 12 megahertz and 11.059
megahertz--with 11.059 being much more common. Why would anyone pick such an
odd-ball frequency? There’s a real reason for it--it has to do with generating baud
rates and we’ll talk more about it in the Serial Communication chapter. For the
remainder of this discussion we’ll assume that we’re using an 11.059 MHz crystal.

Microcontrollers (and many other electrical systems) use crystals to synchronize
operations. The 8051 uses the crystal for precisely that: to synchronize it’s
operation. Effectively, the 8051 operates using what are called "machine cycles." A
single machine cycle is the minimum amount of time in which a single 8051
instruction can be executed, although many instructions take multiple cycles.

A cycle is, in reality, 12 pulses of the crystal. That is to say, if an instruction takes
one machine cycle to execute, it will take 12 pulses of the crystal to execute. Since
we know the crystal is pulsing 11,059,000 times per second and that one machine
cycle is 12 pulses, we can calculate how many instruction cycles the 8051 can
execute per second:

11,059,000 / 12 = 921,583

This means that the 8051 can execute 921,583 single-cycle instructions per second.
Since a large number of 8051 instructions are single-cycle instructions it is often
considered that the 8051 can execute roughly 1 million instructions per second,
although in reality it is less--and, depending on the instructions being used, an
estimate of about 600,000 instructions per second is more realistic.

For example, if you are using exclusively 2-cycle instructions you would find that the
8051 would execute 460,791 instructions per second. The 8051 also has two really
slow instructions that require a full 4 cycles to execute--if you were to execute
nothing but those instructions you’d find performance to be about 230,395
instructions per second.

It is again important to emphasize that not all instructions execute in the same
amount of time. The fastest instructions require one machine cycle (12 crystal
pulses), many others require two machine cycles (24 crystal pulses), and the two
very slow math operations require four machine cycles (48 crystal pulses).

NOTE: Many 8051 derivative chips change instruction timing. For example, many
optimized versions of the 8051 execute instructions in 4 oscillator cycles instead of
12; such a chip would be effectively 3 times faster than the 8051 when used with the
same 11.059 MHz crystal.

8051805180518051 Tutorial Tutorial Tutorial Tutorial

27272727

Since all the instructions require different amounts of time to execute a very obvious
question comes to mind: How can one keep track of time in a time-critical application
if we have no reference to time in the outside world?

Luckily, the 8051 includes timers which allow us to time events with high precision--
which is the topic of the next chapter.

8051805180518051 Tutorial Tutorial Tutorial Tutorial

28282828

Chapter 7 Timers

Timers

The 8051 comes equipped with two timers, both of which may be controlled, set,
read, and configured individually. The 8051 timers have three general functions:

1) Keeping time and/or calculating the amount of time between events.
2) Counting the events themselves.
3) Generating baud rates for the serial port.

The three timer uses are distinct so we will talk about each of them separately. The
first two uses will be discussed in this chapter while the use of timers for baud rate
generation will be discussed in the chapter relating to serial ports.

How Timers Count

How does a timer count? The answer to this question is very simple: A timer always
counts up. It doesn’t matter whether the timer is being used as a timer, a counter,
or a baud rate generator: A timer is always incremented by the microcontroller.

Programming Tip: Some derivative chips actually allow the program to
configure whether the timers count up or down. However, since this option
only exists on some derivatives it is beyond the scope of this tutorial which is
aimed at the standard 8051. It is only mentioned here in the event that you
absolutely need a timer to count backwards, you will know that you may be
able to find an 8051-compatible microcontroller that does it.

Measuring Time

Obviously, one of the primary uses of timers is to measure time. We will discuss this
use of timers first and will subsequently discuss the use of timers to count events.
When a timer is used to measure time it is also called an "interval timer" since it is
measuring the time of the interval between two events.

Timer SFRs

As mentioned before, the 8051 has two timers which each function essentially the
same way. One timer is TIMER0 and the other is TIMER1. The two timers share two
SFRs (TMOD and TCON) which control the timers, and each timer also has two SFRs
dedicated solely to itself (TH0/TL0 and TH1/TL1).

We’ve given SFRs names to make it easier to refer to them, but in reality an SFR has
a numeric address. It is often useful to know the numeric address that corresponds
to an SFR name. The SFRs relating to timers are:

8051805180518051 Tutorial Tutorial Tutorial Tutorial

29292929

SFR Name Description SFR Address

TH0 Timer 0 High Byte 8Ch

TL0 Timer 0 Low Byte 8Ah

TH1 Timer 1 High Byte 8Dh

TL1 Timer 1 Low Byte 8Bh

TCON Timer Control 88h

TMOD Timer Mode 89h

When you enter the name of an SFR into an assembler, it internally converts it to a
number. For example, the command:

MOV TH0,#25h

moves the value 25h into the TH0 SFR. However, since TH0 is the same as SFR
address 8Ch this command is equivalent to:

MOV 8Ch,#25h

Now, back to the timers. First, let’s talk about Timer 0.

Timer 0 has two SFRs dedicated exclusively to itself: TH0 and TL0. Without making
things too complicated to start off with, you may just think of this as the high and
low byte of the timer. That is to say, when Timer 0 has a value of 0, both TH0 and
TL0 will contain 0. When Timer 0 has the value 03E8, TH0 will hold the high byte of
the value (3 decimal) and TL0 will contain the low byte of the value (232 decimal).
Reviewing low/high byte notation, recall that you must multiply the high byte by 256
and add the low byte to calculate the final value. That is to say:

TH0 * 256 + TL0 = 1000
3 * 256 + 232 = 1000

Timer 1 works the exact same way, but its SFRs are TH1 and TL1.

Since there are only two bytes devoted to the value of each timer it is apparent that
the maximum value a timer may have is 65,535. If a timer contains the value
65,535 and is subsequently incremented, it will reset--or overflow--back to 0.

TMOD SFR

Let’s first talk about our first control SFR: TMOD (Timer Mode). The TMOD SFR is
used to control the mode of operation of both timers. Each bit of the SFR gives the
microcontroller specific information concerning how to run a timer. The high four bits
(bits 4 through 7) relate to Timer 1 whereas the low four bits (bits 0 through 3)
perform the exact same functions, but for timer 0.

The individual bits of TMOD have the following functions:

TMOD (89h) SFR

8051805180518051 Tutorial Tutorial Tutorial Tutorial

30303030

Bit Name Explanation of Function Timer

7 GATE1
When this bit is set the timer will only run when
INT1 (P3.3) is high. When this bit is clear the
timer will run regardless of the state of INT1.

1

6 C/T1
When this bit is set the timer will count events
on T1 (P3.5). When this bit is clear the timer will
be incremented every machine cycle.

1

5 T1M1 Timer mode bit (see below) 1

4 T1M0 Timer mode bit (see below) 1

3 GATE0
When this bit is set the timer will only run when
INT0 (P3.2) is high. When this bit is clear the
timer will run regardless of the state of INT0.

0

2 C/T0
When this bit is set the timer will count events
on T0 (P3.4). When this bit is clear the timer will
be incremented every machine cycle.

0

1 T0M1 Timer mode bit (see below) 0

0 T0M0 Timer mode bit (see below) 0

As you can see in the above chart, four bits (two for each timer) are used to specify
a mode of operation. The modes of operation are:

TxM1 TxM0 Timer Mode Description of Mode

0 0 0 13-bit Timer.

0 1 1 16-bit Timer

1 0 2 8-bit auto-reload

1 1 3 Split timer mode

Mode 0 - 13-bit Timer

Timer mode "0" is a 13-bit timer. This is a relic that was kept around in the 8051 to
maintain compatibility with its predecessor, the 8048. Generally the 13-bit timer
mode is not used in new development.

When the timer is in 13-bit mode, TLx will count from 0 to 31. When TLx is
incremented from 31, it will "reset" to 0 and increment THx. Thus, effectively, only
13 bits of the two timer bytes are being used: bits 0-4 of TLx and bits 0-7 of THx.
This also means, in essence, the timer can only contain 8192 values. If you set a 13-
bit timer to 0, it will overflow back to zero 8192 machine cycles later.

Again, there is very little reason to use this mode and it is only mentioned so you
won’t be surprised if you ever end up analyzing archaic code which has been passed
down through the generations (a generation in a programming shop is often on the
order of about 3 or 4 months).

8051805180518051 Tutorial Tutorial Tutorial Tutorial

31313131

Mode 1 - 16-bit Timer

Timer mode "1" is a 16-bit timer. This is a very commonly used mode. It functions
just like 13-bit mode except that all 16 bits are used.

TLx is incremented from 0 to 255. When TLx is incremented from 255, it resets to 0
and causes THx to be incremented by 1. Since this is a full 16-bit timer, the timer
may contain up to 65536 distinct values. If you set a 16-bit timer to 0, it will
overflow back to 0 after 65,536 machine cycles.

Mode 2 – 8-bit Auto-reload Timer

Timer mode "2" is an 8-bit auto-reload mode. What is that, you may ask? Simple.
When a timer is in mode 2, THx holds the "reload value" and TLx is the timer itself.
Thus, TLx starts counting up. When TLx reaches 255 and is subsequently
incremented, instead of resetting to 0 (as in the case of modes 0 and 1), it will be
reset to the value stored in THx.

For example, let’s say TH0 holds the value FDh and TL0 holds the value FEh. If we
were to watch the values of TH0 and TL0 for a few machine cycles this is what we’d
see:

Machine Cycle TH0 Value TL0 Value

1 FDh FEh

2 FDh FFh

3 FDh FDh

4 FDh FEh

5 FDh FFh

6 FDh FDh

7 FDh FEh

As you can see, the value of TH0 never changed. In fact, when you use mode 2 you
almost always set THx to a known value and TLx is the SFR that is constantly
incremented.

What’s the benefit of auto-reload mode? Perhaps you want the timer to always have
a value from 200 to 255. If you use mode 0 or 1, you’d have to check in code to see
if the timer had overflowed and, if so, reset the timer to 200. This takes precious
instructions of execution time to check the value and/or to reload it. When you use
mode 2 the microcontroller takes care of this for you. Once you’ve configured a timer
in mode 2 you don’t have to worry about checking to see if the timer has overflowed
nor do you have to worry about resetting the value--the microcontroller hardware
will do it all for you.

The auto-reload mode is very commonly used for establishing a baud rate which we
will talk more about in the Serial Communications chapter.

8051805180518051 Tutorial Tutorial Tutorial Tutorial

32323232

Mode 3 - Split Timer

Timer mode "3" is a split-timer mode. When Timer 0 is placed in mode 3, it
essentially becomes two separate 8-bit timers. That is to say, Timer 0 is TL0 and
Timer 1 is TH0. Both timers count from 0 to 255 and overflow back to 0. All the bits
that are related to Timer 1 will now be tied to TH0.

While Timer 0 is in split mode, the real Timer 1 (i.e. TH1 and TL1) can be put into
modes 0, 1 or 2 normally--however, you may not start or stop the real timer 1 since
the bits that do that are now linked to TH0. The real timer 1, in this case, will be
incremented every machine cycle no matter what.

The only real use I can see of using split timer mode is if you need to have two
separate timers and, additionally, a baud rate generator. In such case you can use
the real Timer 1 as a baud rate generator and use TH0/TL0 as two separate timers.

TCON SFR

Finally, there’s one more SFR that controls the two timers and provides valuable
information about them. The TCON SFR has the following structure:

TCON (88h) SFR

Bit Name Bit
Address

Explanation of Function Timer

7 TF1 8Fh
Timer 1 Overflow. This bit is set by the
microcontroller when Timer 1 overflows.

1

6 TR1 8Eh
Timer 1 Run. When this bit is set Timer 1 is
turned on. When this bit is clear Timer 1 is off.

1

5 TF0 8Dh
Timer 0 Overflow. This bit is set by the
microcontroller when Timer 0 overflows.

0

4 TR0 8Ch
Timer 0 Run. When this bit is set Timer 0 is
turned on. When this bit is clear Timer 0 is off.

0

As you may notice, we’ve only defined 4 of the 8 bits. That’s because the other 4 bits
of the SFR don’t have anything to do with timers--they have to do with Interrupts
and they will be discussed in the chapter that addresses interrupts.

A new piece of information in this chart is the column "bit address." This is because
this SFR is "bit-addressable." What does this mean? It means if you want to set the
bit TF1--which is the highest bit of TCON--you could execute the command:

MOV TCON, #80h

... or, since the SFR is bit-addressable, you could just execute the command:

SETB TF1

8051805180518051 Tutorial Tutorial Tutorial Tutorial

33333333

This has the benefit of setting the high bit of TCON without changing the value of any
of the other bits of the SFR. Usually when you start or stop a timer you don’t want to
modify the other values in TCON, so you take advantage of the fact that the SFR is
bit-addressable.

How Long do Timers Take to Count?

First, it’s worth mentioning that when a timer is in interval timer mode (as opposed
to event counter mode) and correctly configured, it will increment by 1 every
machine cycle. As you will recall from the previous chapter, a single machine cycle
consists of 12 crystal pulses. Thus a running timer will be incremented:

11,059,000 / 12 = 921,583

921,583 times per second. Unlike instructions--some of which require 1 machine
cycle, others 2, and others 4--the timers are consistent: They will always be
incremented once per machine cycle. Thus if a timer has counted from 0 to 50,000
you may calculate:

50,000 / 921,583 = .0542

.0542 seconds have passed. In plain English, about half of a tenth of a second, or
one-twentieth of a second.

Obviously it’s not very useful to know .0542 seconds have passed. If you want to
execute an event once per second you’d have to wait for the timer to count from 0 to
50,000 18.45 times. How can you wait "half of a time?" You can’t. So we come to
another important calculation.

Let’s say we want to know how many times the timer will be incremented in .05
seconds. We can do simple multiplication:

.05 * 921,583 = 46,079.15.

This tells us that it will take .05 seconds (1/20th of a second) to count from 0 to
46,079. Actually, it will take it .049999837 seconds--so we’re off by .000000163
seconds--however, that’s close enough for government work. Consider that if you
were building a watch based on the 8051 and made the above assumption your
watch would only gain about one second every 2 months. Again, I think that’s
accurate enough for most applications--I wish my watch only gained one second
every two months!

Obviously, this is a little more useful. If you know it takes 1/20th of a second to
count from 0 to 46,079 and you want to execute some event every second you
simply wait for the timer to count from 0 to 46,079 twenty times; then you execute
your event, reset the timers, and wait for the timer to count up another 20 times. In
this manner you will effectively execute your event once per second, accurate to
within thousandths of a second.

8051805180518051 Tutorial Tutorial Tutorial Tutorial

34343434

Thus, we now have a system with which to measure time. All we need to review is
how to control the timers and initialize them to provide us with the information we
need.

Initializing a Timer

Now that we’ve discussed the timer-related SFRs we are ready to write code that will
initialize the timer and start it running.

As you’ll recall, we first must decide what mode we want the timer to be in. In this
case we want a 16-bit timer that runs continuously; that is to say, it is not
dependent on any external pins.

We must first initialize the TMOD SFR. Since we are working with timer 0 we will be
using the lowest 4 bits of TMOD. The first two bits, GATE0 and C/T0 are both 0 since
we want the timer to be independent of the external pins. 16-bit mode is timer mode
1 so we must clear T0M1 and set T0M0. Effectively, the only bit we want to turn on is
bit 0 of TMOD. Thus to initialize the timer we execute the instruction:

MOV TMOD,#01h

Timer 0 is now in 16-bit timer mode. However, the timer is not running. To start the
timer running we must set the TR0 bit. We can do that by executing the instruction:

SETB TR0

Upon executing these two instructions timer 0 will immediately begin counting, being
incremented once every machine cycle (every 12 crystal pulses).

Reading a Timer

There are two common ways of reading the value of a 16-bit timer; which you use
depends on your specific application. You may either read the actual value of the
timer as a 16-bit number, or you may simply detect when the timer has overflowed.

Reading a Timer Value

If your timer is in an 8-bit mode--that is, either 8-bit Auto Reload mode or in split
timer mode--then reading the value of the timer is simple. You simply read the 1-
byte value of the timer and you’re done.

However, if you’re dealing with a 13-bit or 16-bit timer the chore is a little more
complicated. Consider what would happen if you read the low byte of the timer as
255, then read the high byte of the timer as 15. In this case, what actually happened
was that the timer value was 14/255 (high byte 14, low byte 255) but you read
15/255. Why? Because you read the low byte as 255. But when you executed the
next instruction a small amount of time passed--but enough for the timer to

8051805180518051 Tutorial Tutorial Tutorial Tutorial

35353535

increment again at which time the value rolled over from 14/255 to 15/0. But in the
process you’ve read the timer as being 15/255. Obviously there’s a problem there.

The solution? It’s not too tricky, really. You read the high byte of the timer, then
read the low byte, then read the high byte again. If the high byte read the second
time is not the same as the high byte read the first time you repeat the cycle. In
code, this would appear as:

REPEAT: MOV A,TH0

MOV R0,TL 0

CJNE A,TH0,REPEAT

...

In this case, we load the accumulator with the high byte of Timer 0. We then load R0
with the low byte of Timer 0. Finally, we check to see if the high byte we read out of
Timer 0--which is now stored in the Accumulator--is the same as the current Timer 0
high byte. If it isn’t it means we’ve just "rolled over" and must reread the timer’s
value--which we do by going back to REPEAT. When the loop exits we will have the
low byte of the timer in R0 and the high byte in the Accumulator.

Another much simpler alternative is to simply turn off the timer run bit (i.e. CLR
TR0), read the timer value, and then turn on the timer run bit (i.e. SETB TR0). In
that case, the timer isn’t running so no special tricks are necessary. Of course, this
implies that your timer will be stopped for a few machine cycles. Whether or not this
is tolerable depends on your specific application.

Timing the Length of an Event

The 8051 provides another cool toy that can be used to time the length of events.

For example, let's say we're trying to save electricity in the office and we're
interested in how long a light is turned on each day. When the light is turned on, we
want to measure time. When the light is turned off we don't. One option would be to
connect the lights witch to one of the pins, constantly read the pin, and turn the
timer on or off based on the state of that pin. While this would work fine, the 8051
provides us with an easier method of accomplishing this.

Looking again at the TMOD SFR, there is a bit called GATE0. So far we've always
cleared this bit because we wanted the timer to run regardless of the state of the
external pins. However, now it would be nice if an external pin could control whether
the timer was running or not. It can. All we need to do is connect the light switch to
pin INT0 (P3.2) on the 8051 and set the bit GATE0. When GATE0 is set Timer 0 will
only run if P3.2 is high. When P3.2 is low (i.e., the light switch is off) the timer will
automatically be stopped.

Thus, with no control code whatsoever, the external pin P3.2 can control whether or
not our timer is running or not.

Detecting a Timer Overflow

8051805180518051 Tutorial Tutorial Tutorial Tutorial

36363636

Often it is necessary to just know that the timer has reset to 0. That is to say, you
are not particularly interested in the value of the timer but rather you are interested
in knowing when the timer has overflowed back to 0.

Whenever a timer overflows from its highest value back to 0, the microcontroller
automatically sets the TFx bit in the TCON register. This is useful since rather than
checking the exact value of the timer you can just check if the TFx bit is set. If TF0 is
set it means that timer 0 has overflowed; if TF1 is set it means that timer 1 has
overflowed.

We can use this approach to cause the program to execute a fixed delay. As you’ll
recall, we calculated earlier that it takes the 8051 1/20th of a second to count from 0
to 46,079. However, the TFx flag is set when the timer overflows back to 0. Thus, if
we want to use the TFx flag to indicate when 1/20th of a second has passed we must
set the timer initially to 65536 less 46079, or 19,457. If we set the timer to 19,457,
1/20th of a second later the timer will overflow. Thus we come up with the following
code to execute a pause of 1/20th of a second:

MOV TH0,#76;High byte of 19,457 (76 * 256 = 19,456)
MOV TL0,#01;Low byte of 19,457 (19,456 + 1 = 19,457)
MOV TMOD,#01;Put Timer 0 in 16-bit mode
SETB TR0;Make Timer 0 start counting
JNB TF0,$;If TF0 is not set, jump back to this same instruction

In the above code the first two lines initialize the Timer 0 starting value to 19,457.
The next two instructions configure timer 0 and turn it on. Finally, the last instruction
JNB TF0,$, reads "Jump, if TF0 is not set, back to this same instruction." The "$"
operand means, in most assemblers, the address of the current instruction. Thus as
long as the timer has not overflowed and the TF0 bit has not been set the program
will keep executing this same instruction. After 1/20th of a second timer 0 will
overflow, set the TF0 bit, and program execution will then break out of the loop.

Timers as Event Counters

We've discussed how a timer can be used for the obvious purpose of keeping track of
time. However, the 8051 also allows us to use the timers to count events.

How can this be useful? Let's say you had a sensor placed across a road that would
send a pulse every time a car passed over it. This could be used to determine the
volume of traffic on the road. We could attach this sensor to one of the 8051's I/O
lines and constantly monitor it, detecting when it pulsed high and then incrementing
our counter when it went back to a low state. This is not terribly difficult, but
requires some code. Let's say we hooked the sensor to P1.0; the code to count cars
passing would look something like this:

JNB P1.0,$;If a car hasn't raised the signal, keep waiting

JB P1.0 ,$;The line is high which means the car is on the sensor right now

INC COUNTER ;The car has passed completely, so we count it

8051805180518051 Tutorial Tutorial Tutorial Tutorial

37373737

As you can see, it's only three lines of code. But what if you need to be doing other
processing at the same time? You can't be stuck in the JNB P1.0,$ loop waiting for a
car to pass if you need to be doing other things. Of course, there are ways to get
around even this limitation but the code quickly becomes big, complex, and ugly.

Luckily, since the 8051 provides us with a way to use the timers to count events we
don't have to bother with it. It is actually painfully easy. We only have to configure
one additional bit.

Let's say we want to use Timer 0 to count the number of cars that pass. If you look
back to the bit table for the TCON SFR you will there is a bit called "C/T0"--it's bit 2
(TCON.2). Reviewing the explanation of the bit we see that if the bit is clear then
timer 0 will be incremented every machine cycle. This is what we've already used to
measure time. However, if we set C/T0 timer 0 will monitor the P3.4 line. Instead of
being incremented every machine cycle, timer 0 will count events on the P3.4 line.
So in our case we simply connect our sensor to P3.4 and let the 8051 do the work.
Then, when we want to know how many cars have passed, we just read the value of
timer 0--the value of timer 0 will be the number of cars that have passed.

So what exactly is an event? What does timer 0 actually "count?" Speaking at the
electrical level, the 8051 counts 1-0 transitions on the P3.4 line. This means that
when a car first runs over our sensor it will raise the input to a high ("1") condition.
At that point the 8051 will not count anything since this is a 0-1 transition. However,
when the car has passed the sensor will fall back to a low ("0") state. This is a 1-0
transition and at that instant the counter will be incremented by 1.

It is important to note that the 8051 checks the P3.4 line each instruction cycle (12
clock cycles). This means that if P3.4 is low, goes high, and goes back low in 6 clock
cycles it will probably not be detected by the 8051. This also means the 8051 event
counter is only capable of counting events that occur at a maximum of 1/24th the
rate of the crystal frequency. That is to say, if the crystal frequency is 12.000 MHz it
can count a maximum of 500,000 events per second (12.000 MHz * 1/24 =
500,000). If the event being counted occurs more than 500,000 times per second it
will not be able to be accurately counted by the 8051.

8051805180518051 Tutorial Tutorial Tutorial Tutorial

38383838

Chapter 8 Serial Port Operations

Serial Port Operations

One of the 8051’s many powerful features is its integrated UART, otherwise known
as a serial port. The fact that the 8051 has an integrated serial port means that you
may very easily read and write values to the serial port. If it were not for the
integrated serial port, writing a byte to a serial line would be a rather tedious process
requiring turning on and off one of the I/O lines in rapid succession to properly "clock
out" each individual bit, including start bits, stop bits, and parity bits.

However, we do not have to do this. Instead, we simply need to configure the serial
port’s operation mode and baud rate. Once configured, all we have to do is write to
an SFR to write a value to the serial port or read the same SFR to read a value from
the serial port. The 8051 will automatically let us know when it has finished sending
the character we wrote and will also let us know whenever it has received a byte so
that we can process it. We do not have to worry about transmission at the bit level--
which saves us quite a bit of coding and processing time.

Setting the Serial Baud Rate

Once the Serial Port Mode has been configured, as explained above, the program
must configure the serial port’s baud rate. This only applies to Serial Port modes 1
and 3. The Baud Rate is determined based on the oscillator’s frequency when in
mode 0 and 2. In mode 0, the baud rate is always the oscillator frequency divided by
12. This means if you’re crystal is 11.059 MHz, mode 0 baud rate will always be
921,583 baud. In mode 2 the baud rate is always the oscillator frequency divided by
64, so a 11.059Mhz crystal speed will yield a baud rate of 172,797.

In modes 1 and 3, the baud rate is determined by how frequently timer 1 overflows.
The more frequently timer 1 overflows, the higher the baud rate. There are many
ways one can cause timer 1 to overflow at a rate that determines a baud rate, but
the most common method is to put timer 1 in 8-bit auto-reload mode (timer mode 2)
and set a reload value (TH1) that causes Timer 1 to overflow at a frequency
appropriate to generate a baud rate.

To determine the value that must be placed in TH1 to generate a given baud rate,
we may use the following equation (assuming PCON.7 is clear).

TH1 = 256 - ((Crystal / 384) / Baud)

If PCON.7 is set then the baud rate is effectively doubled, thus the equation
becomes:

TH1 = 256 - ((Crystal / 192) / Baud)

For example, if we have an 11.059 MHz crystal and we want to configure the serial
port to 19,200 baud we try plugging it in the first equation:

8051805180518051 Tutorial Tutorial Tutorial Tutorial

39393939

TH1 = 256 - ((Crystal / 384) / Baud)
TH1 = 256 - ((11059000 / 384) / 19200)
TH1 = 256 - ((28,799) / 19200)
TH1 = 256 - 1.5 = 254.5

As you can see, to obtain 19,200 baud on a 11.059Mhz crystal we’d have to set TH1
to 254.5. If we set it to 254 we will have achieved 14,400 baud and if we set it to
255 we will have achieved 28,800 baud. Thus we’re stuck...

But not quite... to achieve 19,200 baud we simply need to set PCON.7 (SMOD).
When we do this we double the baud rate and utilize the second equation mentioned
above. Thus we have:

TH1 = 256 - ((Crystal / 192) / Baud)
TH1 = 256 - ((11059000 / 192) / 19200)
TH1 = 256 - ((57699) / 19200)
TH1 = 256 - 3 = 253

Here we are able to calculate a nice, even TH1 value. Therefore, to obtain 19,200
baud with an 11.059MHz crystal we must:

1. Configure Serial Port mode 1 or 3.
2. Configure Timer 1 to timer mode 2 (8-bit auto-reload).
3. Set TH1 to 253 to reflect the correct frequency for 19,200 baud.
4. Set PCON.7 (SMOD) to double the baud rate.

Setting the Serial Port Mode

The first thing we must do when using the 8051’s integrated serial port is, obviously,
configure it. This lets us tell the 8051 how many data bits we want, the baud rate we
will be using, and how the baud rate will be determined.

First, let’s present the "Serial Control" (SCON) SFR and define what each bit of the
SFR represents:

Bit Name
Bit
Address Explanation of Function

7 SM0 9Fh Serial port mode bit 0

6 SM1 9Eh Serial port mode bit 1.

5 SM2 9Dh Multiprocessor Communications Enable (explained later)

4 REN 9Ch
Receiver Enable. This bit must be set in order to receive
characters.

3 TB8 9Bh Transmit bit 8. The 9th bit to transmit in mode 2 and 3.

2 RB8 9Ah Receive bit 8. The 9th bit received in mode 2 and 3.

1 TI 99h
Transmit Flag. Set when a byte has been completely
transmitted.

0 RI 98h Receive Flag. Set when a byte has been completely received.

8051805180518051 Tutorial Tutorial Tutorial Tutorial

40404040

Additionally, it is necessary to define the function of SM0 and SM1 by an additional
table:

SM0 SM1 Serial Mode Explanation Baud Rate

0 0 0 8-bit Shift Register Oscillator / 12

0 1 1 8-bit UART Set by Timer 1 (*)

1 0 2 9-bit UART Oscillator / 32 (*)

1 1 3 9-bit UART Set by Timer 1 (*)

(*) Note: The baud rate indicated in this table is doubled if PCON.7 (SMOD) is set.

The SCON SFR allows us to configure the Serial Port. Thus, we’ll go through each bit
and review its function.

The first four bits (bits 4 through 7) are configuration bits.

Bits SM0 and SM1 let us set the serial mode to a value between 0 and 3, inclusive.
The four modes are defined in the chart immediately above. As you can see,
selecting the Serial Mode selects the mode of operation (8-bit/9-bit, UART or Shift
Register) and also determines how the baud rate will be calculated. In modes 0 and
2 the baud rate is fixed based on the oscillator’s frequency. In modes 1 and 3 the
baud rate is variable based on how often Timer 1 overflows. We’ll talk more about
the various Serial Modes in a moment.

The next bit, SM2, is a flag for "Multiprocessor communication." Generally, whenever
a byte has been received the 8051 will set the "RI" (Receive Interrupt) flag. This lets
the program know that a byte has been received and that it needs to be processed.
However, when SM2 is set the "RI" flag will only be triggered if the 9th bit received
was a "1". That is to say, if SM2 is set and a byte is received whose 9th bit is clear,
the RI flag will never be set. This can be useful in certain advanced serial
applications. For now it is safe to say that you will almost always want to clear this
bit so that the flag is set upon reception of any character.

The next bit, REN, is "Receiver Enable." This bit is very straightforward: If you want
to receive data via the serial port, set this bit. You will almost always want to set this
bit.

The last four bits (bits 0 through 3) are operational bits. They are used when actually
sending and receiving data--they are not used to configure the serial port.

The TB8 bit is used in modes 2 and 3. In modes 2 and 3, a total of nine data bits are
transmitted. The first 8 data bits are the 8 bits of the main value, and the ninth bit is
taken from TB8. If TB8 is set and a value is written to the serial port, the data’s bits
will be written to the serial line followed by a "set" ninth bit. If TB8 is clear the ninth
bit will be "clear."

The RB8 also operates in modes 2 and 3 and functions essentially the same way as
TB8, but on the reception side. When a byte is received in modes 2 or 3, a total of

8051805180518051 Tutorial Tutorial Tutorial Tutorial

41414141

nine bits are received. In this case, the first eight bits received are the data of the
serial byte received and the value of the ninth bit received will be placed in RB8.

TI means "Transmit Interrupt." When a program writes a value to the serial port, a
certain amount of time will pass before the individual bits of the byte are "clocked
out" the serial port. If the program were to write another byte to the serial port
before the first byte was completely output, the data being sent would be garbled.
Thus, the 8051 lets the program know that it has "clocked out" the last byte by
setting the TI bit. When the TI bit is set, the program may assume that the serial
port is "free" and ready to send the next byte.

Finally, the RI bit means "Receive Interrupt." It functions similarly to the "TI" bit,
but it indicates that a byte has been received. That is to say, whenever the 8051 has
received a complete byte it will trigger the RI bit to let the program know that it
needs to read the value quickly, before another byte is read.

Reading from the Serial Port

Reading data received by the serial port is equally easy. To read a byte from the
serial port one just needs to read the value stored in the SBUF (99h) SFR after the
8051 has automatically set the RI flag in SCON.

For example, if your program wants to wait for a character to be received and
subsequently read it into the Accumulator, the following code segment may be used:

JNB RI,$;Wait for the 8051 to set the RI flag
MOV A,SBUF ;Read the character from the serial port

The first line of the above code segment waits for the 8051 to set the RI flag; again,
the 8051 sets the RI flag automatically when it receives a character via the serial
port. So as long as the bit is not set the program repeats the "JNB" instruction
continuously.

Once the RI bit is set upon character reception the above condition automatically
fails and program flow falls through to the "MOV" instruction which reads the value

Writing to the Serial Port

Once the Serial Port has been properly configured as explained above, the serial port
is ready to be used to send data and receive data. If you thought that configuring
the serial port was simple, using the serial port will be a breeze.

To write a byte to the serial port one must simply write the value to the SBUF (99h)
SFR. For example, if you wanted to send the letter "A" to the serial port, it could be
accomplished as easily as:

MOV SBUF,#’A’

8051805180518051 Tutorial Tutorial Tutorial Tutorial

42424242

Upon execution of the above instruction the 8051 will begin transmitting the
character via the serial port. Obviously transmission is not instantaneous--it takes a
measurable amount of time to transmit. And since the 8051 does not have a serial
output buffer we need to be sure that a character is completely transmitted before
we try to transmit the next character.

The 8051 lets us know when it is done transmitting a character by setting the TI bit
in SCON. When this bit is set we know that the last character has been transmitted
and that we may send the next character, if any. Consider the following code
segment:

CLR TI ;Be sure the bit is initially clear
MOV SBUF,#’A’ ;Send the letter ‘A’ to the serial port
JNB TI,$;Pause until the TI bit is set.

The above three instructions will successfully transmit a character and wait for the TI
bit to be set before continuing. The last instruction says "Jump if the TI bit is not set
to $"--$, in most assemblers, means "the same address of the current instruction."
Thus the 8051 will pause on the JNB instruction until the TI bit is set by the 8051
upon successful transmission of the character.

8051805180518051 Tutorial Tutorial Tutorial Tutorial

43434343

Chapter 9 Interrupts

Interrupts

As the name implies, an interrupt is some event which interrupts normal program
execution.

As stated earlier, program flow is always sequential, being altered only by those
instructions which expressly cause program flow to deviate in some way. However,
interrupts give us a mechanism to "put on hold" the normal program flow, execute a
subroutine, and then resume normal program flow as if we had never left it. This
subroutine, called an interrupt handler, is only executed when a certain event
(interrupt) occurs. The event may be one of the timers "overflowing," receiving a
character via the serial port, transmitting a character via the serial port, or one of
two "external events." The 8051 may be configured so that when any of these
events occur the main program is temporarily suspended and control passed to a
special section of code which presumably would execute some function related to the
event that occurred. Once complete, control would be returned to the original
program. The main program never even knows it was interrupted.

The ability to interrupt normal program execution when certain events occur makes
it much easier and much more efficient to handle certain conditions. If it were not for
interrupts we would have to manually check in our main program whether the timers
had overflown, whether we had received another character via the serial port, or if
some external event had occurred. Besides making the main program ugly and hard
to read, such a situation would make our program inefficient since we’d be burning
precious "instruction cycles" checking for events that usually don’t happen.

For example, let’s say we have a large 16k program executing many subroutines
performing many tasks. Let’s also suppose that we want our program to
automatically toggle the P3.0 port every time timer 0 overflows. The code to do this
isn’t too difficult:

JNB TF0,SKIP_TOGGLE
CPL P3.0
CLR TF0
SKIP_TOGGLE: ...

Since the TF0 flag is set whenever timer 0 overflows, the above code will toggle P3.0
every time timer 0 overflows. This accomplishes what we want, but is inefficient. The
JNB instruction consumes 2 instruction cycles to determine that the flag is not set
and jump over the unnecessary code. In the event that timer 0 overflows, the CPL
and CLR instruction require 2 instruction cycles to execute. To make the math easy,
let’s say the rest of the code in the program requires 98 instruction cycles. Thus, in
total, our code consumes 100 instruction cycles (98 instruction cycles plus the 2 that
are executed every iteration to determine whether or not timer 0 has overflowed). If
we’re in 16-bit timer mode, timer 0 will overflow every 65,536 machine cycles. In
that time we would have performed 655 JNB tests for a total of 1310 instruction
cycles, plus another 2 instruction cycles to perform the code. So to achieve our goal
we’ve spent 1312 instruction cycles. So 2.002% of our time is being spent just

8051805180518051 Tutorial Tutorial Tutorial Tutorial

44444444

checking when to toggle P3.0. And our code is ugly because we have to make that
check every iteration of our main program loop.

Luckily, this isn’t necessary. Interrupts let us forget about checking for the condition.
The microcontroller itself will check for the condition automatically and when the
condition is met will jump to a subroutine (called an interrupt handler), execute the
code, then return. In this case, our subroutine would be nothing more than:

CPL P3.0
RETI

First, you’ll notice the CLR TF0 command has disappeared. That’s because when the
8051 executes our "timer 0 interrupt routine," it automatically clears the TF0 flag.
You’ll also notice that instead of a normal RET instruction we have a RETI
instruction. The RETI instruction does the same thing as a RET instruction, but tells
the 8051 that an interrupt routine has finished. You must always end your interrupt
handlers with RETI.

Thus, every 65536 instruction cycles we execute the CPL instruction and the RETI
instruction. Those two instructions together require 3 instruction cycles, and we’ve
accomplished the same goal as the first example that required 1312 instruction
cycles. As far as the toggling of P3.0 goes, our code is 437 times more efficient! Not
to mention it’s much easier to read and understand because we don’t have to
remember to always check for the timer 0 flag in our main program. We just setup
the interrupt and forget about it, secure in the knowledge that the 8051 will execute
our code whenever it’s necessary.

The same idea applies to receiving data via the serial port. One way to do it is to
continuously check the status of the RI flag in an endless loop. Or we could check the
RI flag as part of a larger program loop. However, in the latter case we run the risk
of missing characters--what happens if a character is received right after we do the
check, the rest of our program executes, and before we even check RI a second
character has come in. We will lose the first character. With interrupts, the 8051 will
put the main program "on hold" and call our special routine to handle the reception
of a character. Thus, we neither have to put an ugly check in our main code nor will
we lose characters.

Events that trigger Interrupts

We can configure the 8051 so that any of the following events will cause an
interrupt:

• Timer 0 Overflow.
• Timer 1 Overflow.
• Reception/Transmission of Serial Character.
• External Event 0.
• External Event 1.

In other words, we can configure the 8051 so that when Timer 0 Overflows or when
a character is sent/received, the appropriate interrupt handler routines are called.

8051805180518051 Tutorial Tutorial Tutorial Tutorial

45454545

Obviously we need to be able to distinguish between various interrupts and
executing different codes depending on what interrupt was triggered. This is
accomplished by jumping to a fixed address when a given interrupt occurs.

Interrupt Flag Interrupt Handler Address

External 0 IE0 0003h

Timer 0 TF0 000Bh

External 1 IE1 0013h

Timer 1 TF1 001Bh

Serial RI/TI 0023h

By consulting the above chart we see that whenever Timer 0 overflows (i.e., the TF0
bit is set), the main program will be temporarily suspended and control will jump to
000BH. It is assumed that we have code at address 000BH that handles the situation
of Timer 0 overflowing.

Setting Up Interrupts

By default at power up, all interrupts are disabled. This means that even if, for
example, the TF0 bit is set, the 8051 will not execute the interrupt. Your program
must specifically tell the 8051 that it wishes to enable interrupts and specifically
which interrupts it wishes to enable.

Your program may enable and disable interrupts by modifying the IE SFR (A8h):

Bit Name Bit Address Explanation of Function

7 EA AFh Global Interrupt Enable/Disable

6 - AEh Undefined

5 - ADh Undefined

4 ES ACh Enable Serial Interrupt

3 ET1 ABh Enable Timer 1 Interrupt

2 EX1 AAh Enable External 1 Interrupt

1 ET0 A9h Enable Timer 0 Interrupt

0 EX0 A8h Enable External 0 Interrupt

As you can see, each of the 8051’s interrupts has its own bit in the IE SFR. You
enable a given interrupt by setting the corresponding bit. For example, if you wish to
enable Timer 1 Interrupt, you would execute either:

MOV IE,#08h

or

SETB ET1

8051805180518051 Tutorial Tutorial Tutorial Tutorial

46464646

Both of the above instructions set bit 3 of IE, thus enabling Timer 1 Interrupt. Once
Timer 1 Interrupt is enabled, whenever the TF1 bit is set, the 8051 will automatically
put "on hold" the main program and execute the Timer 1 Interrupt Handler at
address 001Bh.

However, before Timer 1 Interrupt (or any other interrupt) is truly enabled, you must
also set bit 7 of IE. Bit 7, the Global Interrupt Enable/Disable, enables or disables all
interrupts simultaneously. That is to say, if bit 7 is cleared then no interrupts will
occur, even if all the other bits of IE are set. Setting bit 7 will enable all the
interrupts that have been selected by setting other bits in IE. This is useful in
program execution if you have time-critical code that needs to execute. In this case,
you may need the code to execute from start to finish without any interrupt getting
in the way. To accomplish this you can simply clear bit 7 of IE (CLR EA) and then set
it after your time-critical code is done.

So, to sum up what has been stated in this section, to enable the Timer 1 Interrupt
the most common approach is to execute the following two instructions:

SETB ET1
SETB EA

Thereafter, the Timer 1 Interrupt Handler at 01Bh will automatically be called
whenever the TF1 bit is set (upon Timer 1 overflow).

Polling Sequence

The 8051 automatically evaluates whether an interrupt should occur after every
instruction. When checking for interrupt conditions, it checks them in the following
order:

• External 0 Interrupt
• Timer 0 Interrupt
• External 1 Interrupt
• Timer 1 Interrupt
• Serial Interrupt

This means that if a Serial Interrupt occurs at the exact same instant that an
External 0 Interrupt occurs, the External 0 Interrupt will be executed first and the
Serial Interrupt will be executed once the External 0 Interrupt has completed.

Interrupt Priorities

The 8051 offers two levels of interrupt priority: high and low. By using interrupt
priorities you may assign higher priority to certain interrupt conditions.

For example, you may have enabled Timer 1 Interrupt which is automatically called
every time Timer 1 overflows. Additionally, you may have enabled the Serial
Interrupt which is called every time a character is received via the serial port.
However, you may consider that receiving a character is much more important than
the timer interrupt. In this case, if Timer 1 Interrupt is already executing you may

8051805180518051 Tutorial Tutorial Tutorial Tutorial

47474747

wish that the serial interrupt itself interrupts the Timer 1 Interrupt. When the serial
interrupt is complete, control passes back to Timer 1 Interrupt and finally back to the
main program. You may accomplish this by assigning a high priority to the Serial
Interrupt and a low priority to the Timer 1 Interrupt.

Interrupt priorities are controlled by the IP SFR (B8h). The IP SFR has the following
format:

Bit Name Bit Address Explanation of Function

7 - - Undefined

6 - - Undefined

5 - - Undefined

4 PS BCh Serial Interrupt Priority

3 PT1 BBh Timer 1 Interrupt Priority

2 PX1 BAh External 1 Interrupt Priority

1 PT0 B9h Timer 0 Interrupt Priority

0 PX0 B8h External 0 Interrupt Priority

When considering interrupt priorities, the following rules apply:

• Nothing can interrupt a high-priority interrupt--not even another high priority
interrupt.

• A high-priority interrupt may interrupt a low-priority interrupt.
• A low-priority interrupt may only occur if no other interrupt is already

executing.
• If two interrupts occur at the same time, the interrupt with higher priority will

execute first. If both interrupts are of the same priority the interrupt which is
serviced first by polling sequence will be executed first.

What Happens When an Interrupt Occurs?

When an interrupt is triggered, the following actions are taken automatically by the
microcontroller:

• The current Program Counter is saved on the stack, low-byte first.
• Interrupts of the same and lower priority are blocked.
• In the case of Timer and External interrupts, the corresponding interrupt flag

is cleared.
• Program execution transfers to the corresponding interrupt handler vector

address.
• The Interrupt Handler Routine executes.

Take special note of the third step: If the interrupt being handled is a Timer or
External interrupt, the microcontroller automatically clears the interrupt flag before
passing control to your interrupt handler routine. This means it is not necessary that
you clear the bit in your code.

8051805180518051 Tutorial Tutorial Tutorial Tutorial

48484848

Serial Interrupts

Serial Interrupts are slightly different than the rest of the interrupts. This is due to
the fact that there are two interrupt flags: RI and TI. If either flag is set, a serial
interrupt is triggered. As you will recall from the section on the serial port, the RI bit
is set when a byte is received by the serial port and the TI bit is set when a byte has
been sent.

This means that when your serial interrupt is executed, it may have been triggered
because the RI flag was set or because the TI flag was set--or because both flags
were set. Thus, your routine must check the status of these flags to determine what
action is appropriate. Also, since the 8051 does not automatically clear the RI and TI
flags you must clear these bits in your interrupt handler.

A brief code example is in order:

INT_SERIAL: JNB RI,CHECK_TI ;If the RI flag is not set, we jump to check TI

MOV A,SBUF ;If we got to this line, it’s because the RI bit
was set

CLR RI ;Clear the RI bit after we’ve processed it

CHECK_TI: JNB TI,EXIT_INT ;If the TI flag is not set, we jump to the exit
point

CLR TI ;Clear the TI bit before we send another
character

MOV SBUF,#’A’ ;Send another character to the serial port

EXIT_INT: RETI

As you can see, our code checks the status of both interrupts flags. If both flags
were set, both sections of code will be executed. Also note that each section of code
clears its corresponding interrupt flag. If you forget to clear the interrupt bits, the
serial interrupt will be executed over and over until you clear the bit. Thus it is very
important that you always clear the interrupt flags in a serial interrupt.

What Happens When an Interrupt Ends?

An interrupt ends when your program executes the RETI (Return from Interrupt)
instruction. When the RETI instruction is executed the following actions are taken by
the microcontroller:

• Two bytes are popped off the stack into the Program Counter to restore
normal program execution.

• Interrupt status is restored to its pre-interrupt status.

Register Protection

One very important rule applies to all interrupt handlers: Interrupts must leave the
processor in the same state as it was in when the interrupt initiated.

8051805180518051 Tutorial Tutorial Tutorial Tutorial

49494949

Remember, the idea behind interrupts is that the main program isn’t aware that they
are executing in the "background." However, consider the following code:

CLR C ;Clear carry
MOV A,#25h ;Load the accumulator with 25h
ADDC A,#10h ;Add 10h, with carry

After the above three instructions are executed, the accumulator will contain a value
of 35h.

But what would happen if right after the MOV instruction an interrupt occurred.
During this interrupt, the carry bit was set and the value of the accumulator was
changed to 40h. When the interrupt finished and control was passed back to the
main program, the ADDC would add 10h to 40h, and additionally add an additional
1h because the carry bit is set. In this case, the accumulator will contain the value
51h at the end of execution.

In this case, the main program has seemingly calculated the wrong answer. How can
25h + 10h yield 51h as a result? It doesn’t make sense. A programmer that was
unfamiliar with interrupts would be convinced that the microcontroller was damaged
in some way, provoking problems with mathematical calculations.

What has happened, in reality, is the interrupt did not protect the registers it used.
Restated: An interrupt must leave the processor in the same state as it was
in when the interrupt initiated.

What does this mean? It means if your interrupt uses the accumulator, it must insure
that the value of the accumulator is the same at the end of the interrupt as it was at
the beginning. This is generally accomplished with a PUSH and POP sequence. For
example:

PUSH ACC
PUSH PSW
MOV A,#0FFh
ADD A, #02h
POP PSW
POP ACC

The guts of the interrupt are the MOV instruction and the ADD instruction. However,
these two instructions modify the Accumulator (the MOV instruction) and also modify
the value of the carry bit (the ADD instruction will cause the carry bit to be set).
Since an interrupt routine must guarantee that the registers remain unchanged by
the routine, the routine pushes the original values onto the stack using the PUSH
instruction. It is then free to use the registers it protected to its heart’s content.
Once the interrupt has finished its task, it pops the original values back into the
registers. When the interrupt exits, the main program will never know the difference
because the registers are exactly the same as they were before the interrupt
executed.

In general, your interrupt routine must protect the following registers:

8051805180518051 Tutorial Tutorial Tutorial Tutorial

50505050

• PSW
• DPTR (DPH/DPL)
• ACC
• B
• Registers R0-R7

Remember that PSW consists of many individual bits that are set by various 8051
instructions. Unless you are absolutely sure of what you are doing and have a
complete understanding of what instructions set what bits, it is generally a good idea
to always protect PSW by pushing and popping it off the stack at the beginning and
end of your interrupts.

Note also that most assemblers (in fact, ALL assemblers that I know of) will not allow
you to execute the instruction:

PUSH R0

This is due to the fact that depending on which register bank is selected, R0 may
refer to either internal ram address 00h, 08h, 10h, or 18h. R0, in and of itself, is not
a valid memory address that the PUSH and POP instructions can use.

Thus, if you are using any "R" register in your interrupt routine, you will have to
push that register’s absolute address onto the stack instead of just saying PUSH R0.
For example, instead of PUSH R0 you would execute:

PUSH 00h

Of course, this only works if you’ve selected the default register set. If you are using
an alternate register set, you must PUSH the address which corresponds to the
register you are using.

Common Bugs in Interrupts

Interrupts are a very powerful tool available to the 8051 developer, but when used
incorrectly they can be a source of a huge number of debugging hours. Errors in
interrupt routines are often very difficult to diagnose and correct.

If you are using interrupts and your program is crashing or does not seem to be
performing as you would expect, always review the following interrupt-related
issues:

• Register Protection: Make sure you are protecting all your registers, as
explained above. If you forget to protect a register that your main program is
using, very strange results may occur. In our example above we saw how
failure to protect registers caused the main program to apparently calculate
that 25h + 10h = 51h. If you witness problems with registers changing values
unexpectedly or operations producing "incorrect" values, it is very likely that
you’ve forgotten to protect registers. ALWAYS PROTECT YOUR
REGISTERS.

8051805180518051 Tutorial Tutorial Tutorial Tutorial

51515151

• Forgetting to restore protected values: Another common error is to push
registers onto the stack to protect them, and then forget to pop them off the
stack before exiting the interrupt. For example, you may push ACC, B, and
PSW onto the stack in order to protect them and subsequently pop only ACC
and PSW off the stack before exiting. In this case, since you forgot to restore
the value of "B", an extra value remains on the stack. When you execute the
RETI instruction the 8051 will use that value as the return address instead of
the correct value. In this case, your program will almost certainly crash.
ALWAYS MAKE SURE YOU POP THE SAME NUMBER OF VALUES OFF
THE STACK AS YOU PUSHED ONTO IT.

• Using RET instead of RETI: Remember that interrupts are always
terminated with the RETI instruction. It is easy to inadvertently use the RET
instruction instead. However, the RET instruction will not end your interrupt.
Usually, using a RET instead of a RETI will cause the illusion of your main
program running normally, but your interrupt will only be executed once. If it
appears that your interrupt mysteriously stops executing, verify that you are
exiting with RETI.

8051805180518051 Tutorial Tutorial Tutorial Tutorial

52525252

Chapter 10 Additional Features in 8052

Introduction to 8052

The 8052 microcontroller is the 8051's "big brother." It is a slightly more powerful
microcontroller, sporting a number of additional features which the developer may
make use of:

• 256 bytes of Internal RAM (compared to 128 in the standard 8051).
• A third 16-bit timer, capable of a number of new operation modes and 16-bit

reloads.
• Additional SFRs to support the functionality offered by the third timer.

That's really about all there is to the difference between the 8051 and 8052. The
remainder of this tutorial will explain these additional features offered by the 8052,
and how they are used within user programs. Throughout this tutorial, it is assumed
that you already have read the 8051 Tutorial and have a thorough understanding of
it.

256 bytes of additional Internal RAM

The standard 8051 microcontroller contains 128 bytes of Internal RAM that are
available to the developer as working memory for variables and/or for the operating
stack. Instructions that refer to addresses in the range of 00h through 7Fh refer to
the 8051's Internal RAM, while addresses in the range of 80h through FFh refer to
Special Function Registers (SFRs).

Although the 8052 has 256 bytes of Internal RAM, the above method of referencing
them remains true. Any address between 00h and 7Fh refers to Internal RAM
whereas address in the range of 80h through FFh refer to SFRs.

The 8052's additional Internal RAM may only be referred by Indirect Addressing.
Indirect addressing always refers to Internal RAM, never to an SFR.

Thus, to read the value contained in Internal RAM address 90h, the developer would
need to code something along the lines of the following:

 MOV R0,#90h ;Set the indirect address to 90h
 MOV A,@R0 ;Read the contents of Internal RAM pointed to by R0

The above code first assigns the value 90h to the register R0. It subsequently reads,
indirectly, the contents of the address contained in R0 (90h). Thus, after these two
instructions have executed, the Accumulator will contain the value of Internal RAM
address 90h.

It is very important to understand that the above code is not the same as the
following:

8051805180518051 Tutorial Tutorial Tutorial Tutorial

53535353

 MOV A,90h ;Reads the contents of SFR 90h (P1)

This instruction uses direct addressing; recall that direct addressing reads Internal
RAM when the address is in the range of 00h through 7Fh, and reads an SFR when
the address is in the range of 80h through FFh. Thus in the case of this second
example, the move instruction reads the value of SFR 90h-which happens to be P1
(I/O Port 1).

New SFRs for 8052's Third Timer

NEW SFRs FOR 8052'S THIRD TIMER

In addition to the 8051's standard 21 SFRs, the 8052 adds an additional 5 SFRs
related to the 8052's third timer. All of the original 8051 SFRs function exactly as
they do in the 8051-the 8052 simply adds new SFRs, it doesn't change the definition
of the standard SFRs.

The five new SFRs are in the range of C8h to CDh (SFR C9h is not defined).

Timer 2 as a Baud-Rate Generator

TIMER 2 AS A BAUD-RATE GENERATOR

8051805180518051 Tutorial Tutorial Tutorial Tutorial

54545454

Timer 2 may be used as a baud rate generator. This is accomplished by setting
either RCLK (T2CON.5) or TCLK (T2CON.4).

With the standard 8051, Timer 1 is the only timer which may be used to determine
the baud rate of the serial port. Additionally, the receive and transmit baud rate
must be the same.

With the 8052, however, the user may configure the serial port to receive at one
baud rate and transmit with another. For example, if RCLK is set and TCLK is
cleared, serial data will be received at the baud rate determined by Timer 2 whereas
the baud rate of transmitted data will be determined by Timer 1.

Determining the auto-reload values for a specific baud rate is discussed in Serial Port
Operation; the only difference is that in the case of Timer 2, the auto-reload value is
placed in RCAP2H and RCAP2L, and the value is a 16-bit value rather than an 8-bit
value.

NOTE: When Timer 2 is used as a baud rate generator (either TCLK or RCLK
are set), the Timer 2 Overflow Flag (TF2) will not be set.

T2CON SFR

T2CON SFR

The operation of Timer 2 (T2) is controlled almost entirely by the T2CON SFR, at
address C8h. Note that since this SFR is evenly divisible by 8 that it is bit-
addressable.

BIT NAME
BIT
ADDRESS DESCRIPTION

7 TF2 CFh

Timer 2 Overflow. This bit is set when T2
overflows. When T2 interrupt is enabled,
this bit will cause the interrupt to be
triggered. This bit will not be set if either
TCLK or RCLK bits are set.

6 EXF2 CEh

Timer 2 External Flag. Set by a reload or
capture caused by a 1-0 transition on T2EX
(P1.1), but only when EXEN2 is set. When
T2 interrupt is enabled, this bit will cause
the interrupt to be triggered.

5 RCLK CDh

Timer 2 Receive Clock. When this bit is
set, Timer 2 will be used to determine the
serial port receive baud rate. When clear,
Timer 1 will be used.

4 TCLK CCh

Timer 2 Receive Clock. When this bit is
set, Timer 2 will be used to determine the
serial port transmit baud rate. When clear,
Timer 1 will be used.

8051805180518051 Tutorial Tutorial Tutorial Tutorial

55555555

3 EXEN2 CBh
Timer 2 External Enable. When set, a 1-
0 transition on T2EX (P1.1) will cause a
capture or reload to occur.

2 TR2 CAh
Timer 2 Run. When set, timer 2 will be
turned on. Otherwise, it is turned off.

1 C/T2 C9h

Timer 2 Counter/Interval Timer. If
clear, Timer 2 is an interval counter. If set,
Timer 2 is incremented by 1-0 transition on
T2 (P1.0).

0 CP/ RL2 C8h

Timer 2 Capture/Reload. If clear, auto
reload occurs on timer 2 overflow, or T2EX
1-0 transition if EXEN2 is set. If set, a
capture will occur on a 1-0 transition of
T2EX if EXEN2 is set.

Timer 2 in Auto-Reload Mode

TIMER 2 IN AUTO-RELOAD MODE

The first mode in which Timer 2 may be used is Auto-Reload. The auto-reload mode
functions just like Timer 0 and Timer 1 in auto-reload mode, except that the Timer 2
auto-reload mode performs a full 16-bit reload (recall that Timer 0 and Timer 1 only
have 8-bit reload values). When a reload occurs, the value of TH2 will be reloaded
with the value contained in RCAP2H and the value of TL2 will be reloaded with the
value contained in RCAP2L.

To operate Timer 2 in auto-reload mode, the CP/RL2 bit (T2CON.0) must be clear. In
this mode, Timer 2 (TH2/TL2) will be reloaded with the reload value
(RCAP2H/RCAP2L) whenever Timer 2 overflows; that is to say, whenever Timer 2
overflows from FFFFh back to 0000h. An overflow of Timer 2 will cause the TF2 bit to
be set, which will cause an interrupt to be triggered, if Timer 2 interrupt is enabled.
Note that TF2 will not be set on an overflow condition if either RCLK or TCLK
(T2CON.5 or T2CON.4) are set.

Additionally, by also setting EXEN2 (T2CON.3), a reload will also occur whenever a 1-
0 transition is detected on T2EX (P1.1). A reload which occurs as a result of such a
transition will cause the EXF2 (T2CON.6) flag to be set, triggering a Timer 2 interrupt
if said interrupt has been enabled.

Timer 2 in Capture Mode

TIMER 2 IN CAPTURE MODE

A new mode specific to Timer 2 is called "Capture Mode." As the name implies, this
mode captures the value of Timer 2 (TH2 and TL2) into the capture SFRs (RCAP2H
and RCAP2L). To put Timer 2 in capture mode, CP/ RL2 (T2CON.0) must be set, as
must be EXEN2 (T2CON.3).

8051805180518051 Tutorial Tutorial Tutorial Tutorial

56565656

When configured as mentioned above, a capture will occur whenever a 1-0 transition
is detected on T2EX (P1.1). At the moment the transition is detected, the current
values of TH2 and TL2 will be copied into RCAP2H and RCAP2L, respectively. At the
same time, the EXF2 (T2CON.6) bit will be set, which will trigger an interrupt if Timer
2 interrupt is enabled.

NOTE 1: Note that even in capture mode, an overflow of Timer 2 will result in
TF2 being set and an interrupt being triggered.

NOTE 2: Capture mode is an efficient way to measure the time between
events. At the moment that an event occurs, the current value of Timer 2 will
be copied into RCAP2H/L. However, Timer 2 will not stop and an interrupt will
be triggered. Thus your interrupt routine may copy the value of RCAP2H/L to
a temporary holding variable without having to stop Timer 2. When another
capture occurs, your interrupt can take the difference of the two values to
determine the time transpired. Again, the main advantage is that you don't
have to stop timer 2 to read its value, as is the case with timer 0 and timer 1.

Timer 2 Interrupt

TIMER 2 INTERRUPT

As is the case with the other two timers, timer 2 can be configured to trigger and
interrupt. In fact, the text above indicates a number of situations that can trigger a
timer 2 interrupt.

To enable Timer 2 interrupt, set ET2 (IE.5). This bit of IE is only valid on an 8052.
Similarly, the priority of Timer 2 interrupt can be configured using PT2 (IP.5). As
always, be sure to also set EA (IE.7) when enabling any interrupt.

Once Timer 2 interrupt has been enabled, a Timer 2 interrupt will be triggered
whenever TF2 (T2CON.7) or EXF2 (T2CON.6) are set. The Timer 2 Interrupt routine
must be placed at 002Bh in code memory.

NOTE: Like the Serial Interrupt, Timer 2 interrupt does not clear the interrupt
flag that triggered the interrupt. Since there are two conditions that can
trigger a Timer 2 interrupt, either TF2 or EXF2 being set, the microcontroller
leaves the flags alone so that your interrupt routine can determine the source
of the interrupt and act accordingly. It is possible (and even probable!) that
you will want to do one thing when the timer overflows and something
completely different when a capture or reload is triggered by an external
event. Thus, be sure to always clear TF2 and EXF2 in your Timer 2 Interrupt.
Failing to do so will cause the interrupt to be triggered repeatedly until the
bits are cleared.

8051805180518051 Tutorial Tutorial Tutorial Tutorial

57575757

Reference 8051 / 8052 Instruction Set

ACALL

Operation: ACALL

Function: Absolute Call Within 2K Block

Syntax: ACALL code address

Instructions OpCode Bytes Cycles Flags

ACALL page0 0x11 2 2 None

ACALL page1 0x31 2 2 None

ACALL page2 0x51 2 2 None

ACALL page3 0x71 2 2 None

ACALL page4 0x91 2 2 None

ACALL page5 0xB1 2 2 None

ACALL page6 0xD1 2 2 None

ACALL page7 0xF1 2 2 None

Description: ACALL unconditionally calls a subroutine at the indicated code address.
ACALL pushes the address of the instruction that follows ACALL onto the stack, least-
significant-byte first, most-significant-byte second. The Program Counter is then
updated so that program execution continues at the indicated address.

The new value for the Program Counter is calculated by replacing the least-
significant-byte of the Program Counter with the second byte of the ACALL
instruction, and replacing bits 0-2 of the most-significant-byte of the Program
Counter with 3 bits that indicate the page. Bits 3-7 of the most-significant-byte of
the Program Counter remain unchanged.

Since only 11 bits of the Program Counter are affected by ACALL, calls may only be
made to routines located within the same 2k block as the first byte that follows
ACALL.

See Also: LCALL, RET, Instruction Set

8051805180518051 Tutorial Tutorial Tutorial Tutorial

58585858

ADD, ADDC

Operation: ADD, ADDC

Function: Add Accumulator, Add Accumulator With Carry

Syntax: ADD A,operand

ADDC A,operand

Instructions OpCode Bytes Cycles Flags

ADD A,#data 0x24 2 1 C, AC, OV

ADD A,iram addr 0x25 2 1 C, AC, OV

ADD A,@R0 0x26 1 1 C, AC, OV

ADD A,@R1 0x27 1 1 C, AC, OV

ADD A,R0 0x28 1 1 C, AC, OV

ADD A,R1 0x29 1 1 C, AC, OV

ADD A,R2 0x2A 1 1 C, AC, OV

ADD A,R3 0x2B 1 1 C, AC, OV

ADD A,R4 0x2C 1 1 C, AC, OV

ADD A,R5 0x2D 1 1 C, AC, OV

ADD A,R6 0x2E 1 1 C, AC, OV

ADD A,R7 0x2F 1 1 C, AC, OV

Instructions OpCode Bytes Cycles Flags

ADDC A,#data 0x34 2 1 C, AC, OV

ADDC A,iram addr 0x35 2 1 C, AC, OV

ADDC A,@R0 0x36 1 1 C, AC, OV

ADDC A,@R1 0x37 1 1 C, AC, OV

ADDC A,R0 0x38 1 1 C, AC, OV

ADDC A,R1 0x39 1 1 C, AC, OV

ADDC A,R2 0x3A 1 1 C, AC, OV

ADDC A,R3 0x3B 1 1 C, AC, OV

ADDC A,R4 0x3C 1 1 C, AC, OV

8051805180518051 Tutorial Tutorial Tutorial Tutorial

59595959

ADDC A,R5 0x3D 1 1 C, AC, OV

ADDC A,R6 0x3E 1 1 C, AC, OV

ADDC A,R7 0x3F 1 1 C, AC, OV

Description: Description: ADD and ADDC both add the value operand to the value
of the Accumulator, leaving the resulting value in the Accumulator. The value
operand is not affected. ADD and ADDC function identically except that ADDC adds
the value of operand as well as the value of the Carry flag whereas ADD does not
add the Carry flag to the result.

The Carry bit (C) is set if there is a carry-out of bit 7. In other words, if the
unsigned summed value of the Accumulator, operand and (in the case of ADDC) the
Carry flag exceeds 255 Carry is set. Otherwise, the Carry bit is cleared.

The Auxiliary Carry (AC) bit is set if there is a carry-out of bit 3. In other words, if
the unsigned summed value of the low nibble of the Accumulator, operand and (in
the case of ADDC) the Carry flag exceeds 15 the Auxiliary Carry flag is set.
Otherwise, the Auxiliary Carry flag is cleared.

The Overflow (OV) bit is set if there is a carry-out of bit 6 or out of bit 7, but not
both. In other words, if the addition of the Accumulator, operand and (in the case of
ADDC) the Carry flag treated as signed values results in a value that is out of the
range of a signed byte (-128 through +127) the Overflow flag is set. Otherwise, the
Overflow flag is cleared.

See Also: SUBB, DA, INC, DEC, Instruction Set

AJMP

Operation: AJMP

Function: Absolute Jump Within 2K Block

Syntax: AJMP code address

Instructions OpCode Bytes Cycles Flags

AJMP page0 0x01 2 2 None

AJMP page1 0x21 2 2 None

AJMP page2 0x41 2 2 None

AJMP page3 0x61 2 2 None

AJMP page4 0x81 2 2 None

8051805180518051 Tutorial Tutorial Tutorial Tutorial

60606060

AJMP page5 0xA1 2 2 None

AJMP page6 0xC1 2 2 None

AJMP page7 0xE1 2 2 None

Description: AJMP unconditionally jumps to the indicated code address. The new
value for the Program Counter is calculated by replacing the least-significant-byte of
the Program Counter with the second byte of the AJMP instruction, and replacing bits
0-2 of the most-significant-byte of the Program Counter with 3 bits that indicate the
page of the byte following the AJMP instruction. Bits 3-7 of the most-significant-byte
of the Program Counter remain unchanged.

Since only 11 bits of the Program Counter are affected by AJMP, jumps may only be
made to code located within the same 2k block as the first byte that follows AJMP.

See Also: LJMP, SJMP, Instruction Set

ANL

Operation: ANL

Function: Bitwise AND

Syntax: ANL operand1, operand2

Instructions OpCode Bytes Cycles Flags

ANL iram addr,A 0x52 2 1 None

ANL iram addr,#data 0x53 3 2 None

ANL A,#data 0x54 2 1 None

ANL A,iram addr 0x55 2 1 None

ANL A,@R0 0x56 1 1 None

ANL A,@R1 0x57 1 1 None

ANL A,R0 0x58 1 1 None

ANL A,R1 0x59 1 1 None

ANL A,R2 0x5A 1 1 None

ANL A,R3 0x5B 1 1 None

8051805180518051 Tutorial Tutorial Tutorial Tutorial

61616161

ANL A,R4 0x5C 1 1 None

ANL A,R5 0x5D 1 1 None

ANL A,R6 0x5E 1 1 None

ANL A,R7 0x5F 1 1 None

ANL C,bit addr 0x82 2 1 C

ANL C,/bit addr 0xB0 2 1 C

Description: ANL does a bitwise "AND" operation between operand1 and operand2,
leaving the resulting value in operand1. The value of operand2 is not affected. A
logical "AND" compares the bits of each operand and sets the corresponding bit in
the resulting byte only if the bit was set in both of the original operands, otherwise
the resulting bit is cleared.

See Also: ORL, XRL, Instruction Set

CJNE

Operation: CJNE

Function: Compare and Jump If Not Equal

Syntax: CJNE operand1,operand2,reladdr

Instructions OpCode Bytes Cycles Flags

CJNE A,#data,reladdr 0xB4 3 2 C

CJNE A,iram addr,reladdr 0xB5 3 2 C

CJNE @R0,#data,reladdr 0xB6 3 2 C

CJNE @R1,#data,reladdr 0xB7 3 2 C

CJNE R0,#data,reladdr 0xB8 3 2 C

CJNE R1,#data,reladdr 0xB9 3 2 C

CJNE R2,#data,reladdr 0xBA 3 2 C

CJNE R3,# data,reladdr 0xBB 3 2 C

CJNE R4,#data,reladdr 0xBC 3 2 C

8051805180518051 Tutorial Tutorial Tutorial Tutorial

62626262

CJNE R5,#data,reladdr 0xBD 3 2 C

CJNE R6,#data,reladdr 0xBE 3 2 C

CJNE R7,#data,reladdr 0xBF 3 2 C

Description: CJNE compares the value of operand1 and operand2 and branches to
the indicated relative address if operand1 and operand2 are not equal. If the two
operands are equal program flow continues with the instruction following the CJNE
instruction.

The Carry bit (C) is set if operand1 is less than operand2, otherwise it is cleared.

See Also: DJNZ, Instruction Set

CLR

Operation: CLR

Function: Clear Register

Syntax: CLR register

Instructions OpCode Bytes Cycles Flags

CLR bit addr 0xC2 2 1 None

CLR C 0xC3 1 1 C

CLR A 0xE4 1 1 None

Description: CLR clears (sets to 0) all the bit(s) of the indicated register. If the
register is a bit (including the carry bit), only the specified bit is affected. Clearing
the Accumulator sets the Accumulator’s value to 0.

See Also: SETB, Instruction Set

CPL

Operation: CPL

Function: Complement Register

Syntax: CPL operand

8051805180518051 Tutorial Tutorial Tutorial Tutorial

63636363

Instructions OpCode Bytes Cycles Flags

CPL A 0xF4 1 1 None

CPL C 0xB3 1 1 C

CPL bit addr 0xB2 2 1 None

Description: CPL complements operand, leaving the result in operand. If operand is
a single bit then the state of the bit will be reversed. If operand is the Accumulator
then all the bits in the Accumulator will be reversed. This can be thought of as
"Accumulator Logical Exclusive OR 255" or as "255-Accumulator." If the operand
refers to a bit of an output Port, the value that will be complemented is based on the
last value written to that bit, not the last value read from it.

See Also: CLR, SETB, Instruction Set

DA

Operation: DA

Function: Decimal Adjust Accumulator

Syntax: DA A

Instructions OpCode Bytes Cycles Flags

DA 0xD4 1 1 C

Description: DA adjusts the contents of the Accumulator to correspond to a BCD
(Binary Coded Decimal) number after two BCD numbers have been added by the
ADD or ADDC instruction. If the carry bit is set or if the value of bits 0-3 exceed 9,
0x06 is added to the accumulator. If the carry bit was set when the instruction
began, or if 0x06 was added to the accumulator in the first step, 0x60 is added to
the accumulator.

The Carry bit (C) is set if the resulting value is greater than 0x99, otherwise it is
cleared.

See Also: ADD, ADDC, Instruction Set

8051805180518051 Tutorial Tutorial Tutorial Tutorial

64646464

DEC

Operation: DEC

Function: Decrement Register

Syntax: DEC register

Instructions OpCode Bytes Cycles Flags

DEC A 0x14 1 1 None

DEC iram addr 0x15 2 1 None

DEC @R0 0x16 1 1 None

DEC @R1 0x17 1 1 None

DEC R0 0x18 1 1 None

DEC R1 0x19 1 1 None

DEC R2 0x1A 1 1 None

DEC R3 0x1B 1 1 None

DEC R4 0x1C 1 1 None

DEC R5 0x1D 1 1 None

DEC R6 0x1E 1 1 None

DEC R7 0x1F 1 1 None

Description: DEC decrements the value of register by 1. If the initial value of
register is 0, decrementing the value will cause it to reset to 255 (0xFF Hex). Note:
The Carry Flag is NOT set when the value "rolls over" from 0 to 255.

See Also: INC, SUBB, Instruction Set

DIV

Operation: DIV

Function: Divide Accumulator by B

Syntax: DIV AB

8051805180518051 Tutorial Tutorial Tutorial Tutorial

65656565

Instructions OpCode Bytes Cycles Flags

DIV AB 0x84 1 1 C, OV

Description: Divides the unsigned value of the Accumulator by the unsigned value
of the "B" register. The resulting quotient is placed in the Accumulator and the
remainder is placed in the "B" register.

The Carry flag (C) is always cleared.

The Overflow flag (OV) is set if division by 0 was attempted, otherwise it is
cleared.

See Also: MUL AB, Instruction Set

DJNZ

Operation: DJNZ

Function: Decrement and Jump if Not Zero

Syntax: DJNZ register,reladdr

Instructions OpCode Bytes Cycles Flags

DJNZ iram addr,reladdr 0xD5 3 2 None

DJNZ R0,reladdr 0xD8 2 2 None

DJNZ R1,reladdr 0xD9 2 2 None

DJNZ R2,reladdr 0xDA 2 2 None

DJNZ R3,reladdr 0xDB 2 2 None

DJNZ R4,reladdr 0xDC 2 2 None

DJNZ R5,reladdr 0xDD 2 2 None

DJNZ R6,reladdr 0xDE 2 2 None

DJNZ R7,reladdr 0xDF 2 2 None

8051805180518051 Tutorial Tutorial Tutorial Tutorial

66666666

Description: DJNZ decrements the value of register by 1. If the initial value of
register is 0, decrementing the value will cause it to reset to 255 (0xFF Hex). If the
new value of register is not 0 the program will branch to the address indicated by
relative addr. If the new value of register is 0 program flow continues with the
instruction following the DJNZ instruction.

See Also: DEC, JZ, JNZ, Instruction Set

INC

Operation: INC

Function: Increment Register

Syntax: INC register

Instructions OpCode Bytes Cycles Flags

INC A 0x04 1 1 None

INC iram addr 0x05 2 1 None

INC @R0 0x06 1 1 None

INC @R1 0x07 1 1 None

INC R0 0x08 1 1 None

INC R1 0x09 1 1 None

INC R2 0x0A 1 1 None

INC R3 0x0B 1 1 None

INC R4 0x0C 1 1 None

INC R5 0x0D 1 1 None

INC R6 0x0E 1 1 None

INC R7 0x0F 1 1 None

INC DPTR 0xA3 1 2 None

Description: INC increments the value of register by 1. If the initial value of register
is 255 (0xFF Hex), incrementing the value will cause it to reset to 0. Note: The Carry
Flag is NOT set when the value "rolls over" from 255 to 0.

In the case of "INC DPTR", the value two-byte unsigned integer value of DPTR is
incremented. If the initial value of DPTR is 65535 (0xFFFF Hex), incrementing the

8051805180518051 Tutorial Tutorial Tutorial Tutorial

67676767

value will cause it to reset to 0. Again, the Carry Flag is NOT set when the value of
DPTR "rolls over" from 65535 to 0.

See Also: ADD, ADDC, DEC, Instruction Set

JB

Operation: JB

Function: Jump if Bit Set

Syntax: JB bit addr, reladdr

Instructions OpCode Bytes Cycles Flags

JB bit addr,reladdr 0x20 3 2 None

Description: JB branches to the address indicated by reladdr if the bit indicated by
bit addr is set. If the bit is not set program execution continues with the instruction
following the JB instruction.

See Also: JBC, JNB. Instruction Set

JBC

Operation: JBC

Function: Jump if Bit Set and Clear Bit

Syntax: JB bit addr, reladdr

Instructions OpCode Bytes Cycles Flags

JBC bit addr,reladdr 0x10 3 2 None

Description: JBC will branch to the address indicated by reladdr if the bit indicated
by bit addr is set. Before branching to reladdr the instruction will clear the indicated
bit. If the bit is not set program execution continues with the instruction following
the JBC instruction.

See Also: JB, JNB, Instruction Set

8051805180518051 Tutorial Tutorial Tutorial Tutorial

68686868

JC

Operation: JC

Function: Jump if Carry Set

Syntax: JC reladdr

Instructions OpCode Bytes Cycles Flags

JC reladdr 0x40 2 2 None

Description: JC will branch to the address indicated by reladdr if the Carry Bit is set.
If the Carry Bit is not set program execution continues with the instruction following
the JC instruction.

See Also: JNC, Instruction Set

JMP

Operation: JMP

Function: Jump to Data Pointer + Accumulator

Syntax: JMP @A+DPTR

Instructions OpCode Bytes Cycles Flags

JMP @A+DPTR 0x73 1 2 None

Description: JMP jumps unconditionally to the address represented by the sum of
the value of DPTR and the value of the Accumulator.

See Also: LJMP, AJMP, SJMP, Instruction Set

JNP

Operation: JNB

Function: Jump if Bit Not Set

8051805180518051 Tutorial Tutorial Tutorial Tutorial

69696969

Syntax: JNB bit addr,reladdr

Instructions OpCode Bytes Cycles Flags

JNB bit addr,reladdr 0x30 3 2 None

Description: JNB will branch to the address indicated by reladdress if the indicated
bit is not set. If the bit is set program execution continues with the instruction
following the JNB instruction.

See Also: JB, JBC, Instruction Set

JNC

Operation: JNC

Function: Jump if Carry Not Set

Syntax: JNC reladdr

Instructions OpCode Bytes Cycles Flags

JNC reladdr 0x50 2 2 None

Description: JNC branches to the address indicated by reladdr if the carry bit is not
set. If the carry bit is set program execution continues with the instruction following
the JNB instruction.

See Also: JC, Instruction Set

JNZ

Operation: JNZ

Function: Jump if Accumulator Not Zero

Syntax: JNZ reladdr

8051805180518051 Tutorial Tutorial Tutorial Tutorial

70707070

Instructions OpCode Bytes Cycles Flags

JNZ reladdr 0x70 2 2 None

Description: JNZ will branch to the address indicated by reladdr if the Accumulator
contains any value except 0. If the value of the Accumulator is zero program
execution continues with the instruction following the JNZ instruction.

See Also: JZ, Instruction Set

JZ

Operation: JZ

Function: Jump if Accumulator Zero

Syntax: JNZ reladdr

Instructions OpCode Bytes Cycles Flags

JZ reladdr 0x60 2 2 None

Description: JZ branches to the address indicated by reladdr if the Accumulator
contains the value 0. If the value of the Accumulator is non-zero program execution
continues with the instruction following the JNZ instruction.

See Also: JNZ, Instruction Set

LCALL

Operation: LCALL

Function: Long Call

Syntax: LCALL code addr

Instructions OpCode Bytes Cycles Flags

LCALL code addr 0x12 3 2 None

8051805180518051 Tutorial Tutorial Tutorial Tutorial

71717171

Description: LCALL calls a program subroutine. LCALL increments the program
counter by 3 (to point to the instruction following LCALL) and pushes that value onto
the stack (low byte first, high byte second). The Program Counter is then set to the
16-bit value which follows the LCALL opcode, causing program execution to continue
at that address.

See Also: ACALL, RET, Instruction Set

LJMP

Operation: LJMP

Function: Long Jump

Syntax: LJMP code addr

Instructions OpCode Bytes Cycles Flags

LJMP code addr 0x02 3 2 None

Description: LJMP jumps unconditionally to the specified code addr.

See Also: AJMP, SJMP, JMP, Instruction Set

MOV

Operation: MOV

Function: Move Memory

Syntax: MOV operand1,operand2

Instructions OpCode Bytes Cycles Flags

MOV @R0,#data 0x76 2 1 None

MOV @R1,#data 0x77 2 1 None

MOV @R0,A 0xF6 1 1 None

MOV @R1,A 0xF7 1 1 None

8051805180518051 Tutorial Tutorial Tutorial Tutorial

72727272

MOV @R0,iram addr 0xA6 2 2 None

MOV @R1,iram addr 0xA7 2 2 None

MOV A,#data 0x74 2 1 None

MOV A,@R0 0xE6 1 1 None

MOV A,@R1 0xE7 1 1 None

MOV A,R0 0xE8 1 1 None

MOV A,R1 0xE9 1 1 None

MOV A,R2 0xEA 1 1 None

MOV A,R3 0xEB 1 1 None

MOV A,R4 0xEC 1 1 None

MOV A,R5 0xED 1 1 None

MOV A,R6 0xEE 1 1 None

MOV A,R7 0xEF 1 1 None

MOV A,iram addr 0xE5 2 1 None

MOV C,bit addr 0xA2 2 1 C

MOV DPTR,#data16 0x90 3 2 None

MOV R0,#data 0x78 2 1 None

MOV R1,#data 0x79 2 1 None

MOV R2,#data 0x7A 2 1 None

MOV R3,#data 0x7B 2 1 None

MOV R4,#data 0x7C 2 1 None

MOV R 5,#data 0x7D 2 1 None

MOV R6,#data 0x7E 2 1 None

MOV R7,#data 0x7F 2 1 None

MOV R0,A 0 xF8 1 1 None

MOV R1,A 0 xF9 1 1 None

MOV R2,A 0 xFA 1 1 None

MOV R3,A 0 xFB 1 1 None

8051805180518051 Tutorial Tutorial Tutorial Tutorial

73737373

MOV R4,A 0 xFC 1 1 None

MOV R5,A 0 xFD 1 1 None

MOV R6,A 0xFE 1 1 None

MOV R7 ,A 0xFF 1 1 None

MOV R0,iram addr 0xA8 2 2 None

MOV R1,iram addr 0xA9 2 2 None

MOV R2,iram addr 0xAA 2 2 None

MOV R3,iram addr 0xAB 2 2 None

MOV R4,iram addr 0xAC 2 2 None

MOV R5,iram addr 0xAD 2 2 None

MOV R6,iram addr 0xAE 2 2 None

MOV R7,iram addr 0xAF 2 2 None

MOV bit addr,C 0x92 2 2 None

MOV iram addr,#data 0x75 3 2 None

MOV iram addr,@R0 0x86 2 2 None

MOV iram addr,@R1 0x87 2 2 None

MOV iram addr,R0 0x88 2 2 None

MOV iram addr,R1 0x89 2 2 None

MOV iram addr,R2 0x8A 2 2 None

MOV iram addr,R3 0x8B 2 2 None

MOV iram addr,R4 0x8C 2 2 None

MOV iram addr,R5 0x8D 2 2 None

MOV iram addr,R6 0x8E 2 2 None

MOV iram addr,R7 0x8F 2 2 None

MOV iram addr,A 0xF5 2 1 None

MOV iram addr,iram addr 0x85 3 2 None

8051805180518051 Tutorial Tutorial Tutorial Tutorial

74747474

Description: MOV copies the value of operand2 into operand1. The value of
operand2 is not affected. Both operand1 and operand2 must be in Internal RAM. No
flags are affected unless the instruction is moving the value of a bit into the carry bit
in which case the carry bit is affected or unless the instruction is moving a value into
the PSW register (which contains all the program flags).

** Note: In the case of "MOV iram addr,iram addr", the operand bytes of the
instruction are stored in reverse order. That is, the instruction consisting of the bytes
0x85, 0x20, 0x50 means "Move the contents of Internal RAM location 0x20 to
Internal RAM location 0x50" whereas the opposite would be generally presumed.

See Also: MOVC, MOVX, XCH, XCHD, PUSH, POP, Instruction Set

MOVC

Operation: MOVC

Function: Move Code Byte to Accumulator

Syntax: MOVC A,@A+register

Instructions OpCode Bytes Cycles Flags

MOVC A,@A+DPTR 0x93 1 2 None

MOVC A,@A+PC 0x83 1 1 None

Description: MOVC moves a byte from Code Memory into the Accumulator. The
Code Memory address from which the byte will be moved is calculated by summing
the value of the Accumulator with either DPTR or the Program Counter (PC). In the
case of the Program Counter, PC is first incremented by 1 before being summed with
the Accumulator.

See Also: MOV, MOVX, Instruction Set

MOVX

Operation: MOVX

Function: Move Data To/From External Memory (XRAM)

Syntax: MOVX operand1,operand2

Instructions OpCode Bytes Cycles Flags

MOVX @DPTR,A 0xF0 1 2 None

8051805180518051 Tutorial Tutorial Tutorial Tutorial

75757575

MOVX @R0,A 0xF2 1 2 None

MOVX @R1,A 0xF3 1 2 None

MOVX A,@DPTR 0xE0 1 2 None

MOVX A,@R0 0xE2 1 2 None

MOVX A,@R1 0xE3 1 2 None

Description: MOVX moves a byte to or from External Memory into or from the
Accumulator.

If operand1 is @DPTR, the Accumulator is moved to the 16-bit External Memory
address indicated by DPTR. This instruction uses both P0 (port 0) and P2 (port 2) to
output the 16-bit address and data. If operand2 is DPTR then the byte is moved from
External Memory into the Accumulator.

If operand1 is @R0 or @R1, the Accumulator is moved to the 8-bit External Memory
address indicated by the specified Register. This instruction uses only P0 (port 0) to
output the 8-bit address and data. P2 (port 2) is not affected. If operand2 is @R0 or
@R1 then the byte is moved from External Memory into the Accumulator.

See Also: MOV, MOVC, Instruction Set

MUL

Operation: MUL

Function: Multiply Accumulator by B

Syntax: MUL AB

Instructions OpCode Bytes Cycles Flags

MUL AB 0xA4 1 4 C, OV

Description: Multiples the unsigned value of the Accumulator by the unsigned value
of the "B" register. The least significant byte of the result is placed in the
Accumulator and the most-significant-byte is placed in the "B" register.

The Carry Flag (C) is always cleared.

The Overflow Flag (OV) is set if the result is greater than 255 (if the most-
significant byte is not zero), otherwise it is cleared.

See Also: DIV, Instruction Set

8051805180518051 Tutorial Tutorial Tutorial Tutorial

76767676

NOP

Operation: NOP

Function: None, waste time

Syntax: No Operation

Instructions OpCode Bytes Cycles Flags

NOP 0x00 1 1 None

Description: NOP, as it’s name suggests, causes No Operation to take place for one
machine cycle. NOP is generally used only for timing purposes. Absolutely no flags or
registers are affected.

See Also: Instruction Set

ORL

Operation: ORL

Function: Bitwise OR

Syntax: ORL operand1,operand2

Instructions OpCode Bytes Cycles Flags

ORL iram addr,A 0x42 2 1 None

ORL iram addr,#data 0x43 3 2 None

ORL A,#data 0x44 2 1 None

ORL A,iram addr 0x45 2 1 None

ORL A,@R0 0x46 1 1 None

ORL A,@R1 0x47 1 1 None

ORL A,R0 0x48 1 1 None

ORL A,R1 0x49 1 1 None

ORL A,R2 0x4A 1 1 None

ORL A,R3 0x4B 1 1 None

8051805180518051 Tutorial Tutorial Tutorial Tutorial

77777777

ORL A,R4 0x4C 1 1 None

ORL A,R5 0x4D 1 1 None

ORL A,R6 0x4E 1 1 None

ORL A,R7 0x4F 1 1 None

ORL C,bit addr 0x72 2 2 C

ORL C,/bit addr 0xA0 2 1 C

Description: ORL does a bitwise "OR" operation between operand1 and operand2,
leaving the resulting value in operand1. The value of operand2 is not affected. A
logical "OR" compares the bits of each operand and sets the corresponding bit in the
resulting byte if the bit was set in either of the original operands, otherwise the
resulting bit is cleared.

See Also: ANL, XRL, Instruction Set

POP

Operation: POP

Function: Pop Value From Stack

Syntax: POP

Instructions OpCode Bytes Cycles Flags

POP iram addr 0xD0 2 2 None

Description: POP "pops" the last value placed on the stack into the iram addr
specified. In other words, POP will load iram addr with the value of the Internal RAM
address pointed to by the current Stack Pointer. The stack pointer is then
decremented by 1.

See Also: PUSH, Instruction Set

PUSH

Operation: PUSH

Function: Push Value Onto Stack

Syntax: PUSH

8051805180518051 Tutorial Tutorial Tutorial Tutorial

78787878

Instructions OpCode Bytes Cycles Flags

PUSH iram addr 0xC0 2 2 None

Description: PUSH "pushes" the value of the specified iram addr onto the stack.
PUSH first increments the value of the Stack Pointer by 1, then takes the value
stored in iram addr and stores it in Internal RAM at the location pointed to by the
incremented Stack Pointer.

See Also: POP, Instruction Set

RET

Operation: RET

Function: Return From Subroutine

Syntax: RET

Instructions OpCode Bytes Cycles Flags

RET 0x22 1 2 None

Description: RET is used to return from a subroutine previously called by LCALL or
ACALL. Program execution continues at the address that is calculated by popping the
topmost 2 bytes off the stack. The most-significant-byte is popped off the stack first,
followed by the least-significant-byte.

See Also: LCALL, ACALL, RETI, Instruction Set

RETI

Operation: RETI

Function: Return From Interrupt

Syntax: RETI

Instructions OpCode Bytes Cycles Flags

RETI 0x32 1 2 None

Description: RETI is used to return from an interrupt service routine. RETI first
enables interrupts of equal and lower priorities to the interrupt that is terminating.
Program execution continues at the address that is calculated by popping the

8051805180518051 Tutorial Tutorial Tutorial Tutorial

79797979

topmost 2 bytes off the stack. The most-significant-byte is popped off the stack first,
followed by the least-significant-byte.

RETI functions identically to RET if it is executed outside of an interrupt service
routine.

See Also: RET, Instruction Set

RL

Operation: RL

Function: Rotate Accumulator Left

Syntax: RL A

Instructions OpCode Bytes Cycles Flags

RL A 0x23 1 1 C

Description: Shifts the bits of the Accumulator to the left. The left-most bit (bit 7)
of the Accumulator is loaded into bit 0.

See Also: RLC, RR, RRC, Instruction Set

RLC

Operation: RLC

Function: Rotate Accumulator Left Through Carry

Syntax: RLC A

Instructions OpCode Bytes Cycles Flags

RLC A 0x33 1 1 C

Description: Shifts the bits of the Accumulator to the left. The left-most bit (bit 7)
of the Accumulator is loaded into the Carry Flag, and the original Carry Flag is loaded
into bit 0 of the Accumulator. This function can be used to quickly multiply a byte by
2.

See Also: RL, RR, RRC, Instruction Set

RR

8051805180518051 Tutorial Tutorial Tutorial Tutorial

80808080

Operation: RR

Function: Rotate Accumulator Right

Syntax: RR A

Instructions OpCode Bytes Cycles Flags

RR A 0x03 1 1 None

Description: Shifts the bits of the Accumulator to the right. The right-most bit (bit
0) of the Accumulator is loaded into bit 7.

See Also: RL, RLC, RRC, Instruction Set

RRC

Operation: RRC

Function: Rotate Accumulator Right Through Carry

Syntax: RRC A

Instructions OpCode Bytes Cycles Flags

RRC A 0x13 1 1 C

Description: Shifts the bits of the Accumulator to the right. The right-most bit (bit
0) of the Accumulator is loaded into the Carry Flag, and the original Carry Flag is
loaded into bit 7. This function can be used to quickly divide a byte by 2.

See Also: RL, RLC, RR, Instruction Set

SETB

Operation: SETB

Function: Set Bit

Syntax: SETB bit addr

Instructions OpCode Bytes Cycles Flags

SETB C 0xD3 1 1 C

8051805180518051 Tutorial Tutorial Tutorial Tutorial

81818181

SETB bit addr 0xD2 2 1 None

Description: Sets the specified bit.

See Also: CLR, Instruction Set

SJMP

Operation: SJMP

Function: Short Jump

Syntax: SJMP reladdr

Instructions OpCode Bytes Cycles Flags

SJMP reladdr 0x80 2 2 None

Description: SJMP jumps unconditionally to the address specified reladdr. Reladdr
must be within -128 or +127 bytes of the instruction that follows the SJMP
instruction.

See Also: LJMP, AJMP, Instruction Set

SUBB

Operation: SUBB

Function: Subtract from Accumulator With Borrow

Syntax: SUBB A,operand

Instructions OpCode Bytes Cycles Flags

SUBB A,#data 0x94 2 1 C, AC, OV

SUBB A,iram addr 0x95 2 1 C, AC, OV

SUBB A,@R0 0x96 1 1 C, AC, OV

SUBB A,@R1 0x97 1 1 C, AC, OV

SUBB A,R0 0x98 1 1 C, AC, OV

SUBB A,R1 0x99 1 1 C, AC, OV

8051805180518051 Tutorial Tutorial Tutorial Tutorial

82828282

SUBB A,R2 0x9A 1 1 C, AC, OV

SUBB A,R3 0x9B 1 1 C, AC, OV

SUBB A,R4 0x9C 1 1 C, AC, OV

SUBB A,R5 0x9D 1 1 C, AC, OV

SUBB A,R6 0x9E 1 1 C, AC, OV

SUBB A,R7 0x9F 1 1 C, AC, OV

Description: SUBB subtract the value of operand from the value of the
Accumulator, leaving the resulting value in the Accumulator. The value operand is
not affected.

The Carry Bit (C) is set if a borrow was required for bit 7, otherwise it is cleared. In
other words, if the unsigned value being subtracted is greater than the Accumulator
the Carry Flag is set.

The Auxillary Carry (AC) bit is set if a borrow was required for bit 3, otherwise it is
cleared. In other words, the bit is set if the low nibble of the value being subtracted
was greater than the low nibble of the Accumulator.

The Overflow (OV) bit is set if a borrow was required for bit 6 or for bit 7, but not
both. In other words, the subtraction of two signed bytes resulted in a value outside
the range of a signed byte (-128 to 127). Otherwise it is cleared.

See Also: ADD, ADDC, DEC, Instruction Set

SWAP

Operation: SWAP

Function: Swap Accumulator Nibbles

Syntax: SWAP A

Instructions OpCode Bytes Cycles Flags

SWAP A 0xC4 1 1 None

Description: SWAP swaps bits 0-3 of the Accumulator with bits 4-7 of the
Accumulator. This instruction is identical to executing "RR A" or "RL A" four times.

8051805180518051 Tutorial Tutorial Tutorial Tutorial

83838383

See Also: RL, RLC, RR, RRC, Instruction Set

XCH

Operation: XCH

Function: Exchange Bytes

Syntax: XCH A,register

Instructions OpCode Bytes Cycles Flags

XCH A,@R0 0xC6 1 1 None

XCH A,@R1 0xC7 1 1 None

XCH A,R0 0xC8 1 1 None

XCH A,R1 0xC9 1 1 None

XCH A,R2 0xCA 1 1 None

XCH A,R3 0xCB 1 1 None

XCH A,R4 0xCC 1 1 None

XCH A,R5 0xCD 1 1 None

XCH A,R6 0xCE 1 1 None

XCH A,R7 0xCF 1 1 None

XCH A,iram addr 0xC5 2 1 None

Description: Exchanges the value of the Accumulator with the value contained in
register.

See Also: MOV, Instruction Set

XCHD

Operation: XCHD

Function: Exchange Digit

Syntax: XCHD A,[@R0/@R1]

8051805180518051 Tutorial Tutorial Tutorial Tutorial

84848484

Instructions OpCode Bytes Cycles Flags

XCHD A,@R0 0xD6 1 1 None

XCHD A,@R1 0xD7 1 1 None

Description: Exchanges bits 0-3 of the Accumulator with bits 0-3 of the Internal
RAM address pointed to indirectly by R0 or R1. Bits 4-7 of each register are
unaffected.

See Also: DA, Instruction Set

XRL

Operation: XRL

Function: Bitwise Exclusive OR

Syntax: XRL operand1,operand2

Instructions OpCode Bytes Cycles Flags

XRL iram addr,A 0x62 2 1 None

XRL iram addr,#data 0x63 3 2 None

XRL A,#data 0x64 2 1 None

XRL A,iram addr 0x65 2 1 None

XRL A,@R0 0x66 1 1 None

XRL A,@R1 0x67 1 1 None

XRL A,R0 0x68 1 1 None

XRL A,R1 0x69 1 1 None

XRL A,R2 0x6A 1 1 None

XRL A,R3 0x6B 1 1 None

XRL A,R4 0x6C 1 1 None

XRL A,R5 0x6D 1 1 None

XRL A,R6 0x6E 1 1 None

XRL A,R7 0x6F 1 1 None

8051805180518051 Tutorial Tutorial Tutorial Tutorial

85858585

Description: XRL does a bitwise "EXCLUSIVE OR" operation between operand1 and
operand2, leaving the resulting value in operand1. The value of operand2 is not
affected. A logical "EXCLUSIVE OR" compares the bits of each operand and sets the
corresponding bit in the resulting byte if the bit was set in either (but not both) of
the original operands, otherwise the bit is cleared.

See Also: ANL, ORL, Instruction Set

UNDEFINED

Operation: Undefined Instruction

Function: Undefined

Syntax: ???

Instructions OpCode Bytes Cycles Flags

??? 0xA5 1 1 C

Description: The "Undefined" instruction is, as the name suggests, not a
documented instruction. The 8051 supports 255 instructions and OpCode 0xA5 is the
single OpCode that is not used by any documented function. Since it is not
documented nor defined it is not recommended that it be executed. However, based
on my research, executing this undefined instruction takes 1 machine cycle and
appears to have no effect on the system except that the Carry Bit always seems to
be set.

Note: We received input from an hobbyprojects.com user that the undefined
instruction really has a format of Undefined bit1,bit2 and effectively copies the value
of bit2 to bit1. In this case, it would be a three-byte instruction. We haven't had an
opportunity to verify or disprove this report, so we present it to the world as
"additional information."

See Also: NOP, Instruction Set

8051805180518051 Tutorial Tutorial Tutorial Tutorial

86868686

Appendix Numbering Systems

A numbering system is a set of digits used for mathematical operations such as
counting, adding, subtracting, dividing and multiplying. The numbering system that
we are all familiar with is called decimal. Decimal is called a base 10 numbering
system because it uses 10 digits (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9). Let's now go (way)
back to basics and look at a decimal number 182. From our elementary math
schooling, each digit in a decimal number is in a particular column. This "column
placement" as we shall call it is fundamental to any numbering system whether it is
base 10 (decimal) or something else. The 2 is in the ones column, the 8 in the tens
column and the 1 in the hundreds column. We could break the number out as
follows:

2 x 1 = 2

8 x 10 = 80

1 x 100 = 100

which would give us:

2 + 80 + 100 = 182

Another way of determining the values for each column is by using exponents of the
base numbering system. For example, 10 to the 0 power equals 1, the 1's column.
10 to the power of 1 equals 10, the 10's column, 10 to the power of 2 equals 100,
the 100's column and so on. Be sure that you understand this basic math
methodology to column placement before moving on.

Now when we count in decimal, we generally don't start with zero because it is
implied, but in this case we will show it for completeness. So we count then as
follows:

0

1

2

3

8051805180518051 Tutorial Tutorial Tutorial Tutorial

87878787

4

5

6

7

8

9

10

11

and so on.

Now notice that when we got to 9, our next number had to use the next column to
the left, the 10s column (10 to the power of 1). When starting a new column, the
first number we start with is always 1 and the first number to the right of the 1 will
always be a zero. This may seem obvious at first, especially with our most familiar
numbering system decimal, but keep this concept in mind when working in other
numbering systems as we will be shortly.

You're probably thinking, "Gee this is just wonderful, what else do you have for us
Einstein?" Well, let us now consider a different numbering system. One that is
fundamental to all computer technology. This numbering system in question is called
Binary. Binary is a base 2 numbering system which means it uses only 2 digits (zero
and one). Let's see how one might count using this numbering system:

0

1

10

11

100

101

110

8051805180518051 Tutorial Tutorial Tutorial Tutorial

88888888

111

1000

1001

1010

1011

and so on.

It may seem strange at first, even tedious, but this is how to count in binary. The
concept of column placement we demonstrated using the decimal number 182
remains with binary numbers. Let's use an example binary number like 10110110.
This probably means nothing to you at first glance, but if we dissect it using our
knowledge of column placement, we put this binary number into a more meaningful
context.

Let's first start by figuring out the values of each column for this 8 digit binary
number. Working from right to the left, the first column is the 1's column (in any
numbering system, the rightmost column is always the 1's column). Now how do we
figure out the values for the remaining columns? Answer this question, how many
digits are we using in the binary numbering system? Two. Earlier we learned that
column placement values can be known by using exponents of the base number. 2 to
the power of zero is one or the 1's column which we already knew (any number to
the power of zero is always 1). 2 to the power of 1 is 2 (any number to the number
of 1 is that number). 2 to the power of 2 is 4 (2 x 2 = 4). 2 to the power of 3 is 8 (2
x 2 x 2 = 8). We will eventually end up with the following column values, from
largest to smallest: 1's, 2's, 4's, 8's, 16's, 32's, 64's, and 128's.

Now we can use some math to figure out what the binary number equals in decimal
form. Although a technique which probably seemed silly before, let's multiply each
number in each column by it's column placement value:

0 x 1 = 0

1 x 2 = 2

1 x 4 = 4

0 x 8 = 0

8051805180518051 Tutorial Tutorial Tutorial Tutorial

89898989

1 x 16 = 16

1 x 32 = 32

0 x 64 = 0

1 x 128 = 128

which would give us:

0 + 2 + 4 + 0 + 16 + 32 + 0 + 128 = 182

Cool! You've just done your first binary to decimal conversion, congratulations! Using
these techniques, you could convert any numbering system to decimal. This would
certainly come in handy if you ever meet an extra terrestrial who has 3 fingers and
thus uses a base 3 numbering system. A more practical application would be to use
these techniques on another numbering system that is widely in use in the computer
world. This system is hexadecimal.

The hexadecimal numbering system is a base 16 numbering system. Some people
refer to this numbering system simply as "hex". The 16 digits used in hex in order
from smallest to largest are: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Now what
are those letters doing in there?! Simple, we don't have any single digit past 9 so we
just use the first 6 letters of the alphabet as digits. This means that A is 10 in
decimal and F is equal to 15 in decimal. If you're still awake, perhaps you can figure
out what B6 in hexadecimal equals to in decimal?

If you said 182, good guess. If you actually used our previous techniques to figure it
out by hand, then you obviously are becoming a master of numbering systems. For
those who need a little guidance, here is the math:

6 x 1 = 6

B x 16 = 176

which would give us:

6 + 176 = 182

8051805180518051 Tutorial Tutorial Tutorial Tutorial

90909090

Again, the rightmost column is the 1's column, and the value for the next column is
the base number to the power of 1, or simply the base number itself, in this case 16.
B is really 11 in decimal, which is why B x 16 equals 176. The rest is basic (decimal)
math from grade school days.

You may never count in binary, convert a hex number to decimal or meet E.T., but
by understanding these concepts you can begin to understand how computers and in
turn networks really work at a very fundamental level.

Before moving on to some actual data communications, let's first ask ourselves why
we use binary and hex numbering systems with computers at all? What's wrong with
the decimal numbering system? The problem lies in how a computer operates at the
physical level. Working with electricity and electrical current, computers can
represent two states and two states only at their most basic level. Think of the
standard light bulb that is either on or off. Power is either causing the light bulb to
shine (on) or the lack of power means darkness (off). Computers work with these on
and off's of electricity, two states that we represent using ones and zeroes.

Hex is actually a numbering system that computers know nothing about. Hex was
created and used as an easier representation for programmers. You may think
there's nothing easy about a number such as F8A2 but it is a little easier to work
with than all the 1's and zero's it represents. Hex is also convenient because one hex
digit represents 4 binary digits (bits). In the world of computers where we talk in
bytes (which commonly refers to a group of 8 bits) at a time, 2 hex characters can
easily represent one byte. In the next section on code sets this concept will hopefully
make more sense in case you're a little confused.

Code Sets

With computers using the binary numbering system for representing data, we need
to find a "code set" that can correlate an alphabet, numbering system and character
set to the computer's ones and zeroes. Chances are you have heard of one popular
code set that was been in use for over 100 years. Here's a hint, dots and dashes.
That's right, Morse code. Before there were telephones, people could send a "wire" to
another city by way of a Morse code operator. Morse code operators send signals to
the other end using a binary system. Instead of ones and zeroes, they used dots and
dashes. A dot was represented with a quick tone while a dash was a longer tone. The
message SOS for example could be represented as follows: ... - - - ...

8051805180518051 Tutorial Tutorial Tutorial Tutorial

91919191

The Morse code set was a scheme that matched a certain combination of dots and
dashes to the alphabet, numbers zero thru nine and some special characters. With
computers, we use a similar system of code sets not unlike Morse code. One of the
most popular code sets is called ASCII (American Standard Code for Information
Interchange). The ASCII code set uses a combination of 8 binary digits (bits) to
represent the English alphabet, the ten digits of the decimal numbering system and a
number of special characters. Originally ASCII was defined as a 7 bit code set, but
later expanded and sometimes referred to as Extended ASCII. With 8 bits (a
combination of 8 ones and zeroes) you can come up with 256 unique combinations
to represent all kinds of characters we humans might want the computer to
represent.

In Figure 1 below you will find a table of the extended ASCII code set. A brief
explanation of the column and row headings is necessary. Along with the human
readable ASCII characters in the table, you are given the values for the characters as
they would be represented in binary, hexadecimal and decimal. The binary numbers
along the top row represent the 4 low order bits for the characters below. The first
column of binary numbers along the left are the 4 high order bits. To get the
complete 8 bit number for the ASCII character, you put the lower order bits onto the
end of the high order bits. For example, find the lower case letter 'k' in set. Go all
the way over to the left of the 'k' and write down the 4 binary numbers for it's row.
Now go all the way up from 'k' and write the binary digits for it's column. If you place
the first 4 bits in front of the second set of 4 bits you wrote down, you should end up
with a binary number of '01101001'. That binary number is the combination of bits a
computer uses to represent the lower case 'k'. At least when the computer knows to
use the ASCII code set.

Figure 1

Figuring out what the hex number for each character in the table is can be found in a
similar fashion. However, determine the the decimal equivalent for each character is
a little different. You have to add the column's decimal number to the row's decimal
number. Let's do a quick test. What are the binary, hex and decimal numbers that
are associated with the ASCII character '#'? If you said 00100011, 23 and 35, you
are correct. One last tip, people usually pronounce ASCII as "ASK-ee".

8051805180518051 Tutorial Tutorial Tutorial Tutorial

92929292

There are other code sets you may come across. One that's used primarily on IBM
mainframes is EBCDIC (Extended Binary Coded Data Interchange Code). I think the
person(s) who came up with that acronym went to the Redundancy School of
Redundancy! The EBCDIC code set uses a different combination of 8 bits to represent
various characters. It is not compatible with ASCII. It is usually pronounced "EB-suh-
dick".

